A mathematical model of synthesis of a three-layer (copper–titanium silicide–steel) compound in a combustion mode
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 94-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work presents a two-dimensional mathematical model of self-propagating high-temperature synthesis (SHS) of a specimen consisting of three layers (copper foil – 5Ti + 3Si compacted mixture – steel substrate). A numerical study of the mathematical model is carried out using the finite-difference method. The limiting frontal SHS modes of a three-layer specimen of rectangular cross-section are determined, taking into account the copper layer melting and the thermocapillary wetting of Ti$_5$Si$_3$ synthesis products by the melt with the formation of a composite material during thermal interaction with the steel substrate. The critical minimum thickness of the main internal synthesis layer allowing one to obtain titanium silicides in the frontal combustion mode is calculated. The maximum temperature in the combustion front near the critical conditions is 1652 K. The depth of capillary wetting of the synthesis products with copper melt is in the range of 2-4 mm.
Keywords: self-propagating high-temperature synthesis, melting, thermocapillary flow, metal composite material.
@article{VTGU_2023_86_a6,
     author = {V. G. Prokof'ev},
     title = {A mathematical model of synthesis of a three-layer (copper{\textendash}titanium silicide{\textendash}steel) compound in a combustion mode},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {94--103},
     year = {2023},
     number = {86},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a6/}
}
TY  - JOUR
AU  - V. G. Prokof'ev
TI  - A mathematical model of synthesis of a three-layer (copper–titanium silicide–steel) compound in a combustion mode
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 94
EP  - 103
IS  - 86
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a6/
LA  - ru
ID  - VTGU_2023_86_a6
ER  - 
%0 Journal Article
%A V. G. Prokof'ev
%T A mathematical model of synthesis of a three-layer (copper–titanium silicide–steel) compound in a combustion mode
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 94-103
%N 86
%U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a6/
%G ru
%F VTGU_2023_86_a6
V. G. Prokof'ev. A mathematical model of synthesis of a three-layer (copper–titanium silicide–steel) compound in a combustion mode. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 94-103. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a6/

[1] Merzhanov A.G., Mukasyan A.S., Tverdoplamennoe gorenie, TORUS PRESS, M., 2007

[2] Sarkisyan A.R., Dolukhanyan S.K., Borovinskaya I.P., Merzhanov A.G., “Nekotorye zakonomernosti goreniya smesei perekhodnykh metallov s kremniem i sintez silitsidov”, Fizika goreniya i vzryva, 14:3 (1978), 49–55

[3] Gorshkov V.A., Miloserdoe P.A., Yukhvid V.I., “Zakonomernosti avtovolnovogo sinteza litykh dvoinykh silitsidov molibdena, volframa, niobiya i titana iz smesei termitnogo tipa”, Fizika goreniya i vzryva, 50:5 (2014), 32–36

[4] Pribytkov G.A., Krinitsyn M.G., Korzhova V.V., “Sintez i struktura SVS kompozitov Ti$_5$Si$_3$ + Ti svyazka”, Khimicheskaya fizika i mezoskopiya, 22:3 (2020), 269–280 | DOI

[5] Vasenin I.M., Shrager E.R., Krainov A.Yu., Lukashov O.Yu., Paleev D.Yu., Potapov V.P., Rashevskii V.V., Artemev V.B., Rudenko Yu.F., Kosterenko V.N., Zharkov A.S., Sakovich G.V., Vorozhtsov A.B., Bondarchuk S.S., Matvienko O.V., Smolyakov V.K., Maksimov Yu.M., Prokofev V.G., Matematicheskoe modelirovanie goreniya i vzryva vysokoenergeticheskikh sistem, Izd-vo Tom. un-ta, Tomsk, 2006, 322 pp.

[6] Denisov I., Shakhray D., Malakhov A., Seropyan S., “Combustion Synthesis of Metal-Intermetallic-Ceramic Laminate AlMg6-NiAl-TiC Composite”, Crystals, 12:12 (2022), 1851, 11 pp. | DOI

[7] Chen S., Meng Q., Zhng N., Xue P., Munir Z., “In situ synthesis and bonding of Ti TiAl TiC/Ni functionally graded materials by field-activated pressure-assisted synthesis process”, Materials Science and Engineering A, 538 (2012), 103–109 | DOI | MR

[8] Kamynina O.K., Vadchenko S.G., Shchukin A.S., Kovalev I.D., “Multilayer Coatings on Ti substrate by SHS Method”, Int. Journal Self-Propag. High-Temp. Synth., 25:4 (2016), 238–242 | DOI

[9] Kamynina O.K., Vadchenko S.G., Shchukin A.S., “SHS Joining of Ti-C-Si Ceramics with Tantalum”, Int. Journal Self-Propag. High-Temp. Synth., 27:3 (2018), 192–194 | DOI

[10] Prokofev V.G., Lapshin O.V., Smolyakov V.K., “Makrokinetika goreniya sloevykh kompozitsii s legkoplavkim inertnym sloem”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 52, 102–113 | DOI | MR | Zbl

[11] Abdulkarimova R.G., Ketegenov T.A., Mansurov Z.A., Lapshin O.V., Prokofev V.G., Smolyakov V.K., “O vliyanii fazovykh prevraschenii na neizotermicheskii sintez v mekhanoaktivirovannykh geterogennykh sistemakh”, Fizika goreniya i vzryva, 45:1 (2009), 56–67

[12] Kheifits L.I., Neimark A.V., Mnogofaznye protsessy v poristykh sredakh, Khimiya, M., 1982

[13] Merzhanov A.G., Mukasyan A.S., Rogachev A.S., Sychev A.E., Khvang S., Varma A., “Mikrostruktura fronta goreniya v geterogennykh bezgazovykh sredakh (na primere goreniya sistemy 5Ti + 3Si)”, Fizika goreniya i vzryva, 32:6 (1996), 68–81

[14] Ignatev I.E., Pastukhov E.A., Romanova O.V., “Matematicheskaya model propitki rasplavom metallicheskikh poroshkov s ispolzovaniem vibratsionnogo vozdeistviya”, Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya, 2017, no. 1, 4–10 | DOI | Zbl