Verification of a one-dimensional computer model of longitudinal-transverse vibrations of an artillery gun barrel on firing
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 79-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents the verification results for a one-dimensional computer mathematical model of longitudinal-transverse vibrations of an artillery gun barrel under internal pressure loading and the thermal effect of powder gases based on a comparison with a three-dimensional problem solution. The mathematical model takes into account gravity, non-uniform thermal loading, and pressure distribution along the barrel length on firing. A comparison of one-dimensional and three-dimensional modeling results for vibrations of a cylindrical barrel with variable annular cross-section and a cylindrical barrel of variable annular cross-section with account for manufacturing tolerance of the classical barrel and the barrel with stiffeners is carried out. The comparison shows that the onedimensional model gives a reasonable approximation for barrel oscillations with a deviation from the three-dimensional model case ranging from 2.9% to 12.5%. Therewith, the time required to calculate the vibrations of the barrel in a one-dimensional formulation is significantly reduced (by 4-5 orders of magnitude) as compared to a three-dimensional formulation.
Keywords: mathematical model, model dimension, model verification, gun barrel.
Mots-clés : longitudinal-transverse vibrations
@article{VTGU_2023_86_a5,
     author = {D. A. Klyukin and I. G. Rusyak and V. G. Sufiyanov},
     title = {Verification of a one-dimensional computer model of longitudinal-transverse vibrations of an artillery gun barrel on firing},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {79--93},
     year = {2023},
     number = {86},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a5/}
}
TY  - JOUR
AU  - D. A. Klyukin
AU  - I. G. Rusyak
AU  - V. G. Sufiyanov
TI  - Verification of a one-dimensional computer model of longitudinal-transverse vibrations of an artillery gun barrel on firing
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 79
EP  - 93
IS  - 86
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a5/
LA  - ru
ID  - VTGU_2023_86_a5
ER  - 
%0 Journal Article
%A D. A. Klyukin
%A I. G. Rusyak
%A V. G. Sufiyanov
%T Verification of a one-dimensional computer model of longitudinal-transverse vibrations of an artillery gun barrel on firing
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 79-93
%N 86
%U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a5/
%G ru
%F VTGU_2023_86_a5
D. A. Klyukin; I. G. Rusyak; V. G. Sufiyanov. Verification of a one-dimensional computer model of longitudinal-transverse vibrations of an artillery gun barrel on firing. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 79-93. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a5/

[1] Salnikov A.V., Frantsuzov M.S., Vinogradov K.A., Pyatunin K.R., Nikulin A.S., “Verifikatsiya i validatsiya kompyuternykh modelei”, Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2022, no. 9 (750), 100–115 | DOI

[2] Standard for Verification and validation in computational solid mechanics, American Society of Mechanical Engineers, 2020, 44 pp.

[3] Schwer L.E., “Verification and validation in computational solid mechanics and the ASME Standards Committee”, Fluid Structure Interaction and Moving Boundary Problems, 84 (2005), 109–117 | DOI

[4] An illustration of the concepts of verification and validation in computational solid mechanics, ASME V 10.1-2012, American Society of Mechanical Engineers, 2012, 23 pp.

[5] GOST R 57700.37-2021. Kompyuternye modeli i modelirovanie. Tsifrovye dvoiniki izdelii. Obschie polozheniya, Ros. in-t standartizatsii, M., 2021, 16 pp.

[6] Khomenko Yu.P., Ischenko A.N., Kasimov V.Z., Matematicheskoe modelirovanie vnutriballisticheskikh protsessov v stvolnykh sistemakh, Izd-vo SO RAN, Novosibirsk, 1999, 256 pp.

[7] Rusyak I.G., Sufiyanov V.G., Klyukin D.A., “Odnomernaya matematicheskaya model kolebanii stvola s poperechnym secheniem proizvolnoi formy”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2022, no. 80, 133–146 | DOI

[8] Ignatov A.V., Bogomolov S.N., Fedyanin N.D., “Metod rascheta svobodnykh poperechnykh kolebanii stvola avtomaticheskoi pushki pri zadannom uslovii zakrepleniya”, Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2017, no. 11-2, 70–77

[9] Zheng J., Teng H., Li F., “Modeling and Simulation of Gun Barrel's Lateral Vibration”, International Conference on Computational Intelligence and Software Engineering (Wuhan, China, 2009), 1–4 | DOI

[10] Su Z.T., Xu D., Li X.W., Han Z.F., “Finite-element time-history analysis for dynamic response of small-caliber guns with projectile-barrel coupling”, Journal of Vibration and Shock, 31:23 (2012), 104–108

[11] Esen I., “Dynamic response of a beam due to an accelerating moving mass using moving finite element approximation”, Math. Comput., 16:4 (2011), 171–182 | DOI | MR

[12] Cifuentes A.O., “Dynamic response of a beam excited by a moving mass”, Finite Element Analysis, 5:3 (1989), 237–246 | DOI | Zbl

[13] Chaturvedi E., “Numerical investigation of dynamic interaction with projectile and harmonic behaviour for T-finned machine gun barrels”, Defence Technology, 16:2 (2020), 460–469 | DOI

[14] He H., Zhang X., “A Variable-Rate Firing Optimization of Launcher Based on Particle Swarm Optimization”, Propellants, Explosives, Pyrotechnics, 44:5 (2019), 647–653 | DOI

[15] Karahan F., Pakdemirli M., “Vibration analysis of a beam on a nonlinear elastic foundation”, Structural Engineering and Mechanics, 62:2 (2017), 171–178 | DOI | MR

[16] Sufiyanov V.G., Rusyak I.G., Klyukin D.A., “Matematicheskoe modelirovanie kolebanii stvola s uchetom tekhnologicheskikh otklonenii pri strelbe ocheredyami”, Fundamentalnye osnovy ballisticheskogo proektirovaniya, ed. B.E. Kert, BGTU «Voenmekh», SPb., 2022, 90–97 | DOI

[17] Klyukin D.A., “Matematicheskoe modelirovanie teplovogo nagruzheniya stvola artilleriiskogo orudiya pri vystrele”, Vystavka innovatsii - 2022 (vesennyaya sessiya), sb. materialov XXXIII Respubl. vystavki-sessii studencheskikh innovatsionnykh proektov (Izhevsk, 29 aprelya 2022 g. Izhevsk), Izhevsk. gos. tekhn. un-t im. M.T. Kalashnikova, 2022, 176–182 | DOI

[18] Rabotnoe Yu.N., Soprotivlenie materialov, Fizmatgiz, M., 1963, 456 pp.

[19] Samarskii A.A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971, 553 pp.

[20] Samarskii A.A., Vabischevich P.N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003, 784 pp.

[21] Rusyak I.G., Tenenev V.A., “Modelirovanie ballistiki artilleriiskogo vystrela s uchetom prostranstvennogo raspredeleniya parametrov i protivodavleniya”, Kompyuternye issledovaniya i modelirovanie, 12:5 (2020), 1123–1147 | DOI

[22] Lipanov A.M., Rusyak I.G., Sufiyanov V.G., “Issledovanie vliyaniya kolebanii stvola na ugol vyleta snaryada pri vystrele”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 68, 80–94 | DOI | MR