Numerical modelling of conglomerates flowing by high-temperature gas flow
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 55-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the modeling of conglomerate motion in a uniform and accelerating gas flow is carried out. The gas is viscous, compressible, and heat-conducting. Conglomerate motion is induced by pressure forces. The gas-to-conglomerate heat transfer and the combustion and destruction of the conglomerate are not taken into account. The mathematical model of the motion of conglomerates in the flow of combustion products is based on threedimensional Navier-Stokes equations and the k-$\omega$ SST turbulence model. The system of equations is solved numerically using Godunov-type schemes. The problem solution is obtained by means of technologies and calculation algorithms based on dynamic grids. In the developed methodology, the computational grid is constructed according to the Overset method. Numerical simulation of the motion of non-spherical particles in the nozzle block of a solid-fuel rocket engine is performed using the ANSYS Fluent software package. The conglomerate motion in the computational domain is specified by user-defined functions. Numerical studies of the motion characteristics of one spherical particle and three types of conglomerates, which are equivalent in mass and number of particles, in a uniform and accelerating gas flow have been performed. It has been found that when moving in a uniform flow, asymmetric conglomerates deviate significantly from the symmetry axis, and when moving in an accelerating flow, the conglomerates are stabilized in the vicinity of the symmetry axis, even if the initial position of the conglomerates deviates from the axis.
Keywords: mathematical simulation, nozzle block, conglomerate.
Mots-clés : particles
@article{VTGU_2023_86_a3,
     author = {I. V. Eremin and K. V. Kostushin and S. A. Rashkovskiy and K. N. Zhil'tsov},
     title = {Numerical modelling of conglomerates flowing by high-temperature gas flow},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {55--69},
     year = {2023},
     number = {86},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a3/}
}
TY  - JOUR
AU  - I. V. Eremin
AU  - K. V. Kostushin
AU  - S. A. Rashkovskiy
AU  - K. N. Zhil'tsov
TI  - Numerical modelling of conglomerates flowing by high-temperature gas flow
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 55
EP  - 69
IS  - 86
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a3/
LA  - ru
ID  - VTGU_2023_86_a3
ER  - 
%0 Journal Article
%A I. V. Eremin
%A K. V. Kostushin
%A S. A. Rashkovskiy
%A K. N. Zhil'tsov
%T Numerical modelling of conglomerates flowing by high-temperature gas flow
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 55-69
%N 86
%U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a3/
%G ru
%F VTGU_2023_86_a3
I. V. Eremin; K. V. Kostushin; S. A. Rashkovskiy; K. N. Zhil'tsov. Numerical modelling of conglomerates flowing by high-temperature gas flow. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 55-69. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a3/

[1] Shtekher M.S., Topliva i rabochie tela raketnykh dvigatelei, Mashinostroenie, M., 1976, 167 pp.

[2] Bazzhin A.P., Blagosklonov V.I., Minailos A.N., Pirogova S.V., “Obtekanie sfery sverkh zvukovym potokom sovershennogo gaza”, Uchenye zapiski TsAGI, 1971, no. 3, 95–100

[3] Grodzovskii G.L., “O dvizhenii melkikh chastits v gazovom potoke”, Uchenye zapiski TsAGI, 1974, no. 2, 80–89

[4] Emelyanov V.N., Teterina I.V., Volkov K.N., “Soprotivlenie i teploobmen metalloksidnykh aglomeratov v potoke produktov sgoraniya tverdogo topliva”, Fiziko-khimicheskaya kinetika v gazovoi dinamike, 21:1 (2020), 1–23 | DOI | MR

[5] Vetlutskii V.N., Ganimedov V.L., Muchnaya M.I., “Issledovanie potoka gaza s tverdymi chastitsami v sverkhzvukovom sople”, Prikladnaya mekhanika i tekhnicheskaya fizika, 46:6 (2005), 65–77

[6] Voronetskii A.V., Smolyaga V.I., Arefev K.Yu., Gusev A.A., Abramov M.A., “Parametricheskoe issledovanie vzaimodeistviya chastits kondensirovannoi fazy s vysokoentalpiinym potokom vozdukha v pryamotochnoi kamere sgoraniya”, Inzhenernyi zhurnal: nauka i innovatsii, 2017, no. 8 (68), 1–18 | DOI

[7] Gilmanov A.N., Metody adaptivnykh setok v zadachakh gazovoi dinamiki, MAIK Nauka / Interperiodika, M., 2000, 247 pp. | MR

[8] Lebedev A.S., Liseikin V.D., Khakimzyanov G.S., “Razrabotka metodov postroeniya adaptiv nykh setok”, Vychislitelnye tekhnologii, 7:3 (2002), 29–43 | MR | Zbl

[9] Zaitsev D.K., Schur N.A., “Primenenie deformiruemykh setok dlya chislennogo modelirovaniya techenii v oblastyakh s podvizhnymi granitsami”, Nauchno-tekhnicheskie vedomosti SPbGTU, 2006, no. 5-1, 15–22

[10] Kozelkov A.S., Efremov V.R., Kurkin A.A., Tarasova N.V., Utkin D.A., Tyatyushkina E.S., “Modelirovanie dvizheniya tel v vyazkoi neszhimaemoi zhidkosti”, Sibirskii zhurnal vychislitelnoi matematiki, 22:3 (2019), 261–280 | DOI

[11] Pirogov V.B., Severinov L.I., O raschete vnutrennikh techenii vyazkogo teploprovodnogo gaza, No 3359-77. Dep., VINITI, 1977

[12] Chervakova A.V., Kostyushin K.V., “Issledovanie kharakteristik dvizheniya nesfericheskikh chastits kondensirovannoi fazy v potoke produktov sgoraniya”, sb. nauch. tr. XIX Mezhdunar. konf. studentov, aspirantov i molodykh uchenykh, Perspektivy razvitiya fundamentalnykh nauk, 3, Tomsk, 2022, 36–38

[13] Menter F.R., Kuntz M., Langtry R., “Ten years of industrial experience with the SST Turbulence model”, Proceedings of the 4th International Symposium on Turbulence. Heat and Mass Transfer, Begell House Inc, West Redding, 2003, 625–632