Analytical models of thermal conductivity in two-phase dispersive media. 1. Theoretical study
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 35-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is traditionally believed that various theories and formulas for averaging (homogenization) the properties of inhomogeneous dispersive media, which do not take into account the distance interaction of dispersed particles, are applicable only at low volume concentrations of particles $0 < f_2 < 0.1$. The molecular heat transfer in two-phase dispersive media, both with and without allowance for the interaction of identical spherical particles, is considered in a mathematically rigorous formulation using the method of physical analogy and the concept of the Lorentz local field. It is shown that with an increase in the volume concentration of dispersed particles, the main influence on the effective thermal conductivity coefficient of the medium is exerted by a geometric constraint factor of the carrier phase, which is taken into account by the classical Maxwell's (Clausius-Mossotti) formula. The analytical dependences of the error in the Maxwell's formula, due to the neglected interaction of particles, on the concentration $f_2$ of the particles and the relative thermal conductivity of phases $\lambda_2/\lambda_1$ are obtained. Two corollaries from the Maxwell's formula are derived. The first corollary determines the exact boundaries enclosing the effective thermal conductivity coefficients of homogeneous and isotropic suspensions. They coincide with the known Hashin-Shtrikman bounds. The second corollary gives an exact solution that is invariant with respect to the phase inversion transformation. This solution is used to calculate the effective thermal conductivity coefficient in three-dimensional disordered structurally symmetric two-phase media.
Keywords: dispersive media, composite materials, interaction of dispersed particles, effective thermal conductivity coefficient.
Mots-clés : Laplace's equation
@article{VTGU_2023_86_a2,
     author = {B. V. Boshenyatov and A. A. Glazunov and A. N. Ishchenko and Yu. N. Karnet},
     title = {Analytical models of thermal conductivity in two-phase dispersive media. 1. {Theoretical} study},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {35--54},
     year = {2023},
     number = {86},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a2/}
}
TY  - JOUR
AU  - B. V. Boshenyatov
AU  - A. A. Glazunov
AU  - A. N. Ishchenko
AU  - Yu. N. Karnet
TI  - Analytical models of thermal conductivity in two-phase dispersive media. 1. Theoretical study
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 35
EP  - 54
IS  - 86
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a2/
LA  - ru
ID  - VTGU_2023_86_a2
ER  - 
%0 Journal Article
%A B. V. Boshenyatov
%A A. A. Glazunov
%A A. N. Ishchenko
%A Yu. N. Karnet
%T Analytical models of thermal conductivity in two-phase dispersive media. 1. Theoretical study
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 35-54
%N 86
%U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a2/
%G ru
%F VTGU_2023_86_a2
B. V. Boshenyatov; A. A. Glazunov; A. N. Ishchenko; Yu. N. Karnet. Analytical models of thermal conductivity in two-phase dispersive media. 1. Theoretical study. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 35-54. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a2/

[1] Arkhipov V.A., Vasenin I.M., Usanina A.S., Shrager G.R., Dinamicheskoe vzaimodeistvie chastits dispersnoi fazy v geterogennykh potokakh, Izd. Dom Tom. gos. un-ta, Tomsk, 2019, 328 pp.

[2] Boshenyatov B.V., “O perspektivakh primeneniya mikropuzyrkovykh gazozhidkostnykh sred v tekhnologicheskikh protsessakh”, Izvestiya vuzov. Fizika, 48:11 (2005), 49–54

[3] Torquato S., Random Heterogeneous Materials - Microstructure and Macroscopic Properties, Springer, New York, 2002 | MR | Zbl

[4] Boshenyatov B., “Laws of bubble coalescence and their modeling”, New Developments in Hydro dynamics Research, eds. M.J. Ibragimov, M.A. Anisimov, Nova Science Publishers, New-York, 2012, 211–239

[5] Boshenyatov B.V., Popov V.V., “Acoustic measurement of the gas content (void fraction) of dispersions of very small bubbles in liquids”, Fluid Mechanics, Soviet Research, 19:2 (1990), 112–117

[6] Boshenyatov B.V., Mikropuzyrkovye gazozhidkostnye sredy i perspektivy ikh ispol zovaniya, LAP LAMBERT Academic Publishing, Saarbrucken, 2016, 170 pp.

[7] Boshenyatov B.V., Chernyshev I. V., “The effective viscosity of a microbubbly medium”, Fluid Mechanics, Soviet Research, 20:6 (1991), 124–129

[8] Boshenyatov B.V., Popov V.V., “Zatukhanie nizkochastotnykh zvukovykh voln v mikropuzyr kovoi gazozhidkostnoi srede”, Fundamentalnye issledovaniya, 2009, no. 3-S, 99102

[9] Boshenyatov B.V., “Issledovanie nerezonansnogo effekta zatukhaniya nizkochastotnykh zvu kovykh voln v mikropuzyrkovoi gazozhidkostnoi srede”, Izvestiya vuzov. Fizika, 48:11 (2005), 43–48

[10] Guskov O.B., Boshenyatov B.V., “Vzaimodeistvie faz i prisoedinennaya massa dispersnykh chastits v potentsialnykh potokakh zhidkosti”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2011, no. 4-3, 740–741

[11] Boshenyatov B.V., “Rol gidrodinamicheskogo vzaimodeistviya pri koalestsentsii puzyrkov gaza v zhidkosti”, Doklady Akademii nauk, 427:3 (2009), 321–323

[12] Boshenyatov B.V., “Gidrodinamicheskoe vzaimodeistvie i prisoedinennaya massa dispersnykh chastits”, Izvestiya vuzov. Fizika, 57:8-2 (2014), 50–60

[13] Struminskii V.V., Guskov O.B., Kulbitskii Yu.N., “Gidrodinamika dispersnykh i gazozhidkostnykh potokov”, Doklady AN SSSR, 278:1 (1984), 65–68 | Zbl

[14] Guskov O.B., Struminskii V.V., “Dinamika dispersnykh potokov v prisutstvii granits”, Doklady AN SSSR, 285:4 (1985), 832–835 | Zbl

[15] Batchelor G.K., “Sedimentation in a dilute dispersion of spheres”, Journal of Fluid Mechanics, 52:2 (1972), 245–268 | DOI | Zbl

[16] Batchelor G.K., Green J.T., “The hydrodynamic interaction of two small freely moving spheres in a linear flow field”, Journal of Fluid Mechanics, 56:2 (1972), 375–400 | DOI | Zbl

[17] Batchelor G.K., Green J.T., “The determination of the bulk stress in a suspension of spherical particles to order $c^2$”, Journal of Fluid Mechanics, 56:3 (1972), 401–427 | DOI | Zbl

[18] Jeffrey D.J., “Conduction through a random suspension of spheres”, Proceedings of the Royal Society of London, A335 (1973), 355–367 | DOI | MR

[19] Maxwell J.C., Electricity and magnetism, 1st ed., Clarendon Press, 1873

[20] Einstein A., “Eineneue-Bestimung der Molekuldimensionen”, Annals of Physics, 19 (1906), 289–306 | DOI

[21] Guskov O.B., “O dvizhenii klastera sfericheskikh chastits v idealnoi zhidkosti”, Prikladnaya matematika i mekhanika, 78:2 (2014), 186–193 | Zbl

[22] Boshenyatov B.V., “The contribution of interactions of spherical inclusions into electrical and thermal conductivity of composite materials”, Composites: Mechanics, Computations, Applications, 7:2 (2016), 95–104 | DOI

[23] Buryachenko V.A., “General integral equations of micromechanics of heterogeneous materials”, International Journal for Multiscale Computational Engineering, 13:1 (2015), 11–53 | DOI | MR

[24] Fokin A.G., “Makroskopicheskaya provodimost sluchaino-neodnorodnykh sred. Metody rascheta”, Uspekhi fizicheskikh nauk, 166:10 (1996), 1069–1093 | DOI

[25] Felderhof B.U., “Virtual mass and drag in two-phase flow”, Journal of Fluid Mechanics, 225 (1991), 177–196 | DOI | MR | Zbl

[26] Struminskii V.V., Guskov O.B., Korolkov G.A., “Gidrodinamicheskoe vzaimodeistvie chastits v potentsialnykh potokakh idealnoi zhidkosti”, Doklady AN SSSR, 290:4 (1986), 820–824 | MR | Zbl

[27] Guskov O.B., “Metod samosoglasovannogo polya primenitelno k dinamike vyazkikh suspenzii”, Prikladnaya matematika i mekhanika, 77:4 (2013), 557–572 | Zbl

[28] Dulnev G.N., Novikov V.V., Protsessy perenosa v neodnorodnykh sredakh, Energoatomizdat, Leningr. otd-nie, L., 1991, 248 pp.

[29] Hashin Z., Shtrikman S., “A variational approach to the theory of the effective magnetic permeability of multiphase materials”, Journal of Applied Physics, 33:10 (1962), 3125–3131 | DOI | MR | Zbl

[30] Lorenz L., “Ueber die refractionsconstante”, Annalen der Physik, 247:9 (1880), 70–103 | DOI

[31] Landau L.D., Lifshits E.M., Teoreticheskaya fizika, v. 6, Gidrodinamika, Nauka, Gl. red. fiz.-mat. lit.., M., 1986, 736 pp. | MR

[32] Zuzovsky M., Brenner H., “Effective Conductivities of Composite Materials Composed of Cubic Arrangements of Spherical Particles Embedded in an Isotropic Matrix”, Journal of Applied Mathematics and Physics (ZAMP), 28:6 (1977), 979–992 | DOI | MR

[33] Samantray P.K., Karthikeyan P., Reddy K.S., “Estimating effective thermal conductivity of two-phase materials”, International Journal of Heat and Mass Transfer, 49:21-22 (2006), 4209–4219 | DOI | Zbl

[34] Kristensson G., “Homogenization of spherical inclusions”, Progress in Electromagnetics Research (PIER), 42 (2003), 1–25 | DOI

[35] Pierre M., Guerin C.-A., Sentenac A., “Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy”, Physical Review B, 72:1 (2005), 014205 | DOI

[36] Sushko M.Ya., “O dielektricheskoi pronitsaemosti suspenzii”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 132:2 (2007), 478–484 | DOI

[37] Sevostianov I., Mogilevskaya S.G., Kushch V.I., “Maxwell's methodology of estimating effective properties: Alive and well”, International Journal of Engineering Science, 140 (2019), 35–88 | DOI | MR | Zbl

[38] Rayleigh Lord. LVI, “On the influence of obstacles arranged in rectangular order upon the properties of a medium”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34:211 (1892), 481–502 | DOI

[39] McPhedran R.C., McKenzie D.R., “The conductivity of lattices of spheres. I. The simple cubic lattice”, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 359:1696 (1978), 45–63 | DOI

[40] McKenzie D.R., McPhedran R.C., Derrick G.H., “The conductivity of lattices of spheres. II. The body centered and face centered cubic lattices”, Proceedings of the Royal Society of London Ser. A. Mathematical and Physical Sciences, 362 (1978), 211–232 | DOI

[41] Sangani A.S., Acrivos A., “The effective conductivity of a periodic array of spheres”, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 386 (1983), 263275 | DOI

[42] Felderhof U., “Bounds for the effective dielectric constant of disordered two-phase materials”, Journal of Physics C: Solid State Physics, 15 (1982), 1731–1739 | DOI

[43] Felderhof U., “Bounds for the effective dielectric constant of a suspension of uniform spheres”, Journal of Physics C: Solid State Physics, 15 (1982), 3953–3966 | DOI

[44] Guskov O.B., Boshenyatov B.V., “Gidrodinamicheskoe vzaimodeistvie sfericheskikh chastits v potoke nevyazkoi zhidkosti”, Doklady Akademii nauk, 438:5 (2011), 626–628

[45] Boshenyatov B.V., “K teorii elektro- i teploprovodnosti puzyrkovykh gazozhidkostnykh sred”, Doklady Akademii nauk, 459:6 (2014), 693–695 | DOI

[46] Boudenne A., Ibos L., Fois M., Majeste J.C., Gehin E., “Electrical and thermal behavior of polypropylene filled with copper particles”, Composites Part A: Applied Science and Manufactoring, 36:11 (2005), 1545–1554 | DOI

[47] Eucken A., “Allgemeine Gesetzma-Bigkeiten fur das Warmeleitvermogen verschiedener Stoff-arten und Aggregatzustande”, Forschung Gabiete Ingenieur, 11:1 (1940), 6–20 | DOI

[48] Carson J.K., Lovatt S.J., Tanner D.J., Cleland A.C., “Predicting the effective thermal conductivity of unfrozen porous foods”, Journal of Food Engineering, 5 (2006), 297–307 | DOI

[49] Dykhne A.M., “Provodimost dvumernoi dvukhfaznoi sistemy”, ZhETF, 59:7 (1970), 110–115

[50] Sushko M.Ya., Kriskiv S.K., “Metod kompaktnykh grupp v teorii dielektricheskoi pronitsaemosti geterogennykh sistem”, Zhurnal tekhnicheskoi fiziki, 79:3 (2009), 79–101

[51] Tjaden B., Cooper S.J., Brett D.JL., Kramer D., Shearing P.R., “On the origin and application of the Bruggeman correlation for analyzing transport phenomena in electrochemical systems”, Current Opinion in Chemical Engineering, 12 (2016), 44–51 | DOI

[52] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, v 2 t., v. 1, Mir, M., 1990, 415 pp. | MR