Involutions of the automorphism group of a completely decomposable finite-rank Abelian group
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 167-175
Voir la notice de l'article provenant de la source Math-Net.Ru
In the framework of the study of questions of the definability of a completely decomposable Abelian group of finite rank by its group of automorphisms, it is shown that any set of pairwise permutable involutions of such a group of automorphisms, which has some additional properties, is conjugate with a set of diagonal involutions.
Keywords:
completely decomposable group, involution
Mots-clés : automorphism group, matrix.
Mots-clés : automorphism group, matrix.
@article{VTGU_2023_86_a12,
author = {E. A. Timoshenko and I. V. Tretyakov},
title = {Involutions of the automorphism group of a completely decomposable finite-rank {Abelian} group},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {167--175},
publisher = {mathdoc},
number = {86},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a12/}
}
TY - JOUR AU - E. A. Timoshenko AU - I. V. Tretyakov TI - Involutions of the automorphism group of a completely decomposable finite-rank Abelian group JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 167 EP - 175 IS - 86 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a12/ LA - ru ID - VTGU_2023_86_a12 ER -
%0 Journal Article %A E. A. Timoshenko %A I. V. Tretyakov %T Involutions of the automorphism group of a completely decomposable finite-rank Abelian group %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 167-175 %N 86 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a12/ %G ru %F VTGU_2023_86_a12
E. A. Timoshenko; I. V. Tretyakov. Involutions of the automorphism group of a completely decomposable finite-rank Abelian group. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 167-175. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a12/