On a class of homeomorphisms of function spaces preserving the Lindelöf number of domains
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 159-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the class of all homeomorphisms between the function spaces of the form $C_p(X)$, $C_p(Y)$ such that the images of $Y$ and $X$ under their dual and, respectively, inverse dual mappings consist of finitely supported functionals. We prove that if a homeomorphism belongs to this class, then Lindelöf numbers $l(X)$ and $l(Y)$ are equal. This result generalizes the known theorem of A. Bouziad for linear homeomorphisms of function spaces.
Keywords: Lindelöf number, function space, pointwise convergence topology, finite support property.
@article{VTGU_2023_86_a11,
     author = {V. R. Lazarev},
     title = {On a class of homeomorphisms of function spaces preserving the {Lindel\"of} number of domains},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {159--166},
     year = {2023},
     number = {86},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a11/}
}
TY  - JOUR
AU  - V. R. Lazarev
TI  - On a class of homeomorphisms of function spaces preserving the Lindelöf number of domains
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 159
EP  - 166
IS  - 86
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a11/
LA  - en
ID  - VTGU_2023_86_a11
ER  - 
%0 Journal Article
%A V. R. Lazarev
%T On a class of homeomorphisms of function spaces preserving the Lindelöf number of domains
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 159-166
%N 86
%U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a11/
%G en
%F VTGU_2023_86_a11
V. R. Lazarev. On a class of homeomorphisms of function spaces preserving the Lindelöf number of domains. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 159-166. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a11/

[1] Bouziad A., “Le degre de Lindelöf est $l$-invariant”, Proceedings of the American Mathe matical Society, 129:3 (2001), 913–919 | DOI | MR | Zbl

[2] Arbit A.V., “The Lindelof number is $f$u-invariant”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika - Tomsk State University Journal of Mathematics and Mechanics, 2(3) (2008), 10–19

[3] Arbit A.V., “The Lindelof number greater than continuum is $u$-invariant”, Serdica Mathematical Journal, 37 (2011), 143–162 | MR | Zbl

[4] Lazarev V.R., “Functionals with a finite support and homeomorphisms of spaces of continuous functions”, Proceedings of the International Scientific Conference LXXV Herzen Readings. Modern Problems of Mathematics and Mathematical Education (2022, St. Petersburg), 2022, 218–223

[5] Lazarev V.R., “On the weak finite support property of homeomorphisms of function spaces on ordinals”, Topology and Its Applications, 275 (2020), 107012 | DOI | MR | Zbl

[6] Bessaga C., Pelczynski A., “Spaces of continuous functions (IV). (On isomorphical clas sification of spaces of continuous functions)”, Studia Mathematica, 19:1 (1960), 53–62 | DOI | MR | Zbl

[7] Osipov A.V., “Projective versions of the properties in the Scheepers Diagram”, Topology and Its Applications, 278 (2020), 107232 pp. | DOI | MR | Zbl