On a class of homeomorphisms of function spaces preserving the Lindel\"of number of domains
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 159-166

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class of all homeomorphisms between the function spaces of the form $C_p(X)$, $C_p(Y)$ such that the images of $Y$ and $X$ under their dual and, respectively, inverse dual mappings consist of finitely supported functionals. We prove that if a homeomorphism belongs to this class, then Lindelöf numbers $l(X)$ and $l(Y)$ are equal. This result generalizes the known theorem of A. Bouziad for linear homeomorphisms of function spaces.
Keywords: Lindelöf number, function space, pointwise convergence topology, finite support property.
@article{VTGU_2023_86_a11,
     author = {V. R. Lazarev},
     title = {On a class of homeomorphisms of function spaces preserving the {Lindel\"of} number of domains},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {159--166},
     publisher = {mathdoc},
     number = {86},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a11/}
}
TY  - JOUR
AU  - V. R. Lazarev
TI  - On a class of homeomorphisms of function spaces preserving the Lindel\"of number of domains
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 159
EP  - 166
IS  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a11/
LA  - en
ID  - VTGU_2023_86_a11
ER  - 
%0 Journal Article
%A V. R. Lazarev
%T On a class of homeomorphisms of function spaces preserving the Lindel\"of number of domains
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 159-166
%N 86
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a11/
%G en
%F VTGU_2023_86_a11
V. R. Lazarev. On a class of homeomorphisms of function spaces preserving the Lindel\"of number of domains. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 159-166. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a11/