@article{VTGU_2023_86_a11,
author = {V. R. Lazarev},
title = {On a class of homeomorphisms of function spaces preserving the {Lindel\"of} number of domains},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {159--166},
year = {2023},
number = {86},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a11/}
}
TY - JOUR AU - V. R. Lazarev TI - On a class of homeomorphisms of function spaces preserving the Lindelöf number of domains JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 159 EP - 166 IS - 86 UR - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a11/ LA - en ID - VTGU_2023_86_a11 ER -
%0 Journal Article %A V. R. Lazarev %T On a class of homeomorphisms of function spaces preserving the Lindelöf number of domains %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 159-166 %N 86 %U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a11/ %G en %F VTGU_2023_86_a11
V. R. Lazarev. On a class of homeomorphisms of function spaces preserving the Lindelöf number of domains. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 159-166. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a11/
[1] Bouziad A., “Le degre de Lindelöf est $l$-invariant”, Proceedings of the American Mathe matical Society, 129:3 (2001), 913–919 | DOI | MR | Zbl
[2] Arbit A.V., “The Lindelof number is $f$u-invariant”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika - Tomsk State University Journal of Mathematics and Mechanics, 2(3) (2008), 10–19
[3] Arbit A.V., “The Lindelof number greater than continuum is $u$-invariant”, Serdica Mathematical Journal, 37 (2011), 143–162 | MR | Zbl
[4] Lazarev V.R., “Functionals with a finite support and homeomorphisms of spaces of continuous functions”, Proceedings of the International Scientific Conference LXXV Herzen Readings. Modern Problems of Mathematics and Mathematical Education (2022, St. Petersburg), 2022, 218–223
[5] Lazarev V.R., “On the weak finite support property of homeomorphisms of function spaces on ordinals”, Topology and Its Applications, 275 (2020), 107012 | DOI | MR | Zbl
[6] Bessaga C., Pelczynski A., “Spaces of continuous functions (IV). (On isomorphical clas sification of spaces of continuous functions)”, Studia Mathematica, 19:1 (1960), 53–62 | DOI | MR | Zbl
[7] Osipov A.V., “Projective versions of the properties in the Scheepers Diagram”, Topology and Its Applications, 278 (2020), 107232 pp. | DOI | MR | Zbl