High-precision representations of inertial rotations and louis poinsot instability
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 149-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The coordinate method for determining the rotations of bodies in space is proposed. The method does not use Euler angles and hypercomplex Hamilton numbers. The developed computational technique is based on the point distribution of masses in space. If the body is replaced by a system of points and this approximation is sufficient, then the rest of the calculation results are highly accurate. The latter is achieved through the synthesis of an exact method for solving systems of algebraic equations with a high-precision step-by-step method for solving systems of differential equations resolved with respect to the derivatives of the desired quantities. Based on the developed computational method, unstable inertial rotations were studied. The existence of an instability different from the Louis Poinsot instability is shown.
Mots-clés : Euler angles, rotation quaternions, rotation
Keywords: body position in space.
@article{VTGU_2023_86_a10,
     author = {M. A. Bubenchikov and A. M. Bubenchikov and D. V. Mamontov},
     title = {High-precision representations of inertial rotations and louis poinsot instability},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {149--158},
     year = {2023},
     number = {86},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a10/}
}
TY  - JOUR
AU  - M. A. Bubenchikov
AU  - A. M. Bubenchikov
AU  - D. V. Mamontov
TI  - High-precision representations of inertial rotations and louis poinsot instability
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 149
EP  - 158
IS  - 86
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a10/
LA  - ru
ID  - VTGU_2023_86_a10
ER  - 
%0 Journal Article
%A M. A. Bubenchikov
%A A. M. Bubenchikov
%A D. V. Mamontov
%T High-precision representations of inertial rotations and louis poinsot instability
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 149-158
%N 86
%U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a10/
%G ru
%F VTGU_2023_86_a10
M. A. Bubenchikov; A. M. Bubenchikov; D. V. Mamontov. High-precision representations of inertial rotations and louis poinsot instability. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 149-158. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a10/

[1] Panov A.P., Tsisarzh V.V., Konashkov A.I., “O gruppakh i algebrakh negamiltonovykh kvaternionov, pyatimernykh vektorov vraschenii v zadachakh”, Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovanii, 2013, no. 10-1, 82–84

[2] Tsisarzh V.V., Marusik R.I., Matematicheskie metody kompyuternoi grafiki, Fakt, Kiev, 2004, 464 pp.

[3] Pobegailo A.P., Primenenie kvaternionov v kompyuternoi geometrii i grafike, BGU, Minsk, 2019, 223 pp.

[4] Isaev M.A., Isaev A.M., Kudinov N.V., Mironenko R.S., “Algoritm nachalnoi initsiali zatsii kvaterniona prostranstvennoi orientatsii v parametrakh Rodriga-Gamiltona”, Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta, 18:2 (2018), 238–245 | DOI

[5] Nikiforova L.N., “Optimalnoe upravlenie v postroenii traektorii pereleta vertoleta v zadannuyu tochku prostranstva”, Programmnye sistemy: teoriya i prilozheniya, 3:2 (2012), 61–75

[6] Chelnokov Yu.N., “Kvaternionnaya regulyarizatsiya v astrodinamike i upravlenie traektornym dvizheniem”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 4:5 (2011), 2583–2585

[7] Perelyaev S.E., Chelnokov Yu.N., “Algoritmy orientatsii dvizhuschegosya ob'ekta s razdeleniem integrirovaniya bystrykh i medlennykh dvizhenii”, Prikladnaya matematika i mekhanika, 81:1 (2017), 18–32 | MR | Zbl

[8] Chelnokov Yu.N., “Inertsialnaya navigatsiya v kosmose s ispolzovaniem regulyarnykh kvaternionnykh uravnenii astrodinamiki”, Prikladnaya matematika i mekhanika, 82:6 (2018), 706–720 | DOI

[9] Chelnokov Yu.N., “Vozmuschennaya prostranstvennaya zadacha dvukh tel: regulyarnye kvaternionnye uravneniya otnositelnogo dvizheniya”, Prikladnaya matematika i mekhanika, 82:6 (2018), 721–733 | DOI