Analysis of gravitational settling regimes for a drop
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 21-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results of a study on the gravitational settling of water drops with a diameter of 0.5–5 mm in air are presented. A new setup for studying the characteristics of drop setting is tested. To obtain reproducible drops and to measure their sizes, the Mariotte bottle and gravimetric method are presented as the most appropriate. For Weber numbers We < 1.6, the patterns of drop setting correspond to a solid spherical particle. It is shown that the length of the non-stationary section of the drop trajectory increases linearly from 1 to 15 m with increasing the drop diameter. The approximation dependence for the distance traveled to reach a stationary settling regime is obtained. It is shown that Klyachko-Mazin formula is the most adequate for determining the drag coefficient in the range of Reynolds numbers Re = 0.3$ \div$ 700. The numerical calculation results are in quantitative and qualitative agreement with the experimental data.
Keywords: drop, solid spherical particle, gravitational settling, settling regime, Reynolds number, distance travelled to attain a stationary settling regime, experimental study, numerical study.
Mots-clés : drag coefficient
@article{VTGU_2023_86_a1,
     author = {V. A. Arkhipov and S. A. Basalaev and K. G. Perfilieva and V. I. Romandin and A. S. Usanina},
     title = {Analysis of gravitational settling regimes for a drop},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {21--34},
     year = {2023},
     number = {86},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a1/}
}
TY  - JOUR
AU  - V. A. Arkhipov
AU  - S. A. Basalaev
AU  - K. G. Perfilieva
AU  - V. I. Romandin
AU  - A. S. Usanina
TI  - Analysis of gravitational settling regimes for a drop
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 21
EP  - 34
IS  - 86
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a1/
LA  - ru
ID  - VTGU_2023_86_a1
ER  - 
%0 Journal Article
%A V. A. Arkhipov
%A S. A. Basalaev
%A K. G. Perfilieva
%A V. I. Romandin
%A A. S. Usanina
%T Analysis of gravitational settling regimes for a drop
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 21-34
%N 86
%U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a1/
%G ru
%F VTGU_2023_86_a1
V. A. Arkhipov; S. A. Basalaev; K. G. Perfilieva; V. I. Romandin; A. S. Usanina. Analysis of gravitational settling regimes for a drop. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 21-34. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a1/

[1] Karlin L.N., Matveev L.T., “Ob osnovnykh faktorakh obrazovaniya atmosfernykh osadkov”, Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2006, no. 2, 65–69

[2] Arkhipov V.A., Zharova I.K., Kozlov E.A., Tkachenko A.S., “Prognozirovanie ekologicheskikh posledstvii rasprostraneniya oblaka toksichnykh aerozolei v raionakh padeniya otrabotannykh stupenei raket-nositelei”, Optika atmosfery i okeana, 28:1 (2015), 89–93

[3] Tkachenko A.S., Zharova I.K., Kozlov E.A., “Evolyutsiya oblaka kapel pri avariinom sbrose aviatsionnogo topliva”, Izvestiya vuzov. Fizika, 56:9/3 (2013), 210–212

[4] Podrezov Yu.V., “Osobennosti primeneniya i razrabotki sovremennykh aviatsionnykh sredstv borby s lesnymi pozharami”, Problemy bezopasnosti i chrezvychainykh situatsii, 2019, no. 2, 46–50

[5] Khasanov I.R., Orlov O.I., “Effektivnost ekraniruyuschei sposobnosti raspylennoi vody pri pozhare”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 60, 132–140 | DOI

[6] Zverkov M.S., Sovershenstvovanie sposobov monitoringa kapelno-dozhdevoi erozii pochv v usloviyakh Nechernozemnoi zony Rossiiskoi Federatsii, dis. ... kand. tekhn. nauk, M., 2015

[7] Fuks N.A., Mekhanika aerozolei, Izd-vo AN SSSR, M., 1955

[8] Kelbaliev G.I., “Koeffitsienty soprotivleniya tverdykh chastits, kapel i puzyrei razlichnoi formy”, Teoreticheskie osnovy khimicheskoi tekhnologii, 45:3 (2011), 264–283

[9] Arkhipov V.A., Antonnikova A.A., Basalaev S.A., Perfileva K.G., “Metody izmereniya koeffitsienta soprotivleniya sfericheskoi chastitsy v nestandartnykh usloviyakh”, Optika atmosfery i okeana, 32:6 (2019), 495–499 | DOI

[10] Arkhipov V.A., Vasenin I.M., Shrager G.R., Usanina A.S., Dinamicheskoe vzaimodeistvie chastits dispersnoi fazy v geterogennykh potokakh, Izd. Dom Tom. gos. un-ta, Tomsk, 2019, 330 pp.

[11] Butov V.G., Vasenin I.M., Shrager G.R., “Deformatsiya kapli v vyazkom potoke i usloviya suschestvovaniya ee ravnovesnoi formy”, Prikladnaya matematika i mekhanika, 46:6 (1982), 1045–1049

[12] Nigmatulin R.I., Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987

[13] Shilyaev M.I., Shilyaev A.M., Aerodinamika i teplomassoobmen gazodispersnykh potokov, Izd-vo Tom. gos. arkh.-stroit. un-ta, Tomsk, 2013, 272 pp.

[14] Terekhov V.I., Pakhomov M.A., Teplomassoperenos i gidrodinamika v gazokapelnykh potokakh, Izd-vo NGTU, Novosibirsk, 2008, 284 pp.

[15] Aleshkevich V.A., Dedenko L.G., Karavaev V.A., Mekhanika sploshnykh sred, Izd-vo FF MGU, M., 1998

[16] Adamson A., Fizicheskaya khimiya poverkhnostei, Mir, M., 1979