Modeling of inhomogeneous deformation of porous ceramics using Gaussian random fields
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 132-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the inhomogeneous distribution of strain in porous ceramic specimens under diametral compression is numerically analyzed using a stochastic representation of the material structure. Models of the structure of porous ceramics are based on a probabilistic description of mechanical properties of ceramics using Gaussian random fields. Numerical simulation is performed for zirconium ceramics with porosities of 4 and 42 %. In the framework of the modeling method used, different porosities of ceramics are taken into account in terms of effective mechanical properties and parameters of the covariation matrix of a random Gaussian field. The simulation of the diametral compression of porous ceramic specimens is carried out in a two-dimensional formulation under plane-strain conditions. The loading is set in the upper and lower parts of the specimen near the central vertical axis through the velocities of the selected nodes. Distributions of the strain tensor components for the studied specimens are analyzed, and their evolution in the central part of the specimens is studied in detail. It is shown that the strain is localized in the form of bands of different sizes and intensities inclined at an angle of approximately 45° to the loading axis. The difference in the strain distributions for the specimens with various porosities in the performed calculations is a result of different models of the inhomogeneous structure. The specimen with a porosity of 4 % is characterized by a greater number of heterogeneous regions of smaller size compared with a specimen with a porosity of 42 %. The proposed method of describing the material structure allows one to obtain various types of inhomogeneous strain distributions under diametral compression, as well as to control the size of heterogeneous regions in the strain distributions.
Keywords: inhomogeneous random structure, porous ceramics, diametral compression test, stochastic modeling, Gaussian random fields, strain inhomogeneity, numerical modeling.
@article{VTGU_2023_85_a9,
     author = {V. A. Zimina},
     title = {Modeling of inhomogeneous deformation of porous ceramics using {Gaussian} random fields},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {132--145},
     year = {2023},
     number = {85},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_85_a9/}
}
TY  - JOUR
AU  - V. A. Zimina
TI  - Modeling of inhomogeneous deformation of porous ceramics using Gaussian random fields
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 132
EP  - 145
IS  - 85
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_85_a9/
LA  - ru
ID  - VTGU_2023_85_a9
ER  - 
%0 Journal Article
%A V. A. Zimina
%T Modeling of inhomogeneous deformation of porous ceramics using Gaussian random fields
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 132-145
%N 85
%U http://geodesic.mathdoc.fr/item/VTGU_2023_85_a9/
%G ru
%F VTGU_2023_85_a9
V. A. Zimina. Modeling of inhomogeneous deformation of porous ceramics using Gaussian random fields. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 132-145. http://geodesic.mathdoc.fr/item/VTGU_2023_85_a9/

[1] GOST 21153. 3-85. Porody gornye. Metody opredeleniya predela prochnosti pri odnoosnom rastyazhenii, Izd-vo standartov, M., 1986, 14 pp.

[2] ASTM D3967-08. Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens, ASTM International, West Conshohocken, PA, 2008, 4 pp.

[3] R. Abdullah, T. Tsutsumi, M. F.M. Amin, A. S.A. Rashid, F. A.I. Khalfalla, U. A. Ahmed, I. Shahrin, “Evolution on deformation behaviour of Brazilian test under different contact area using particle image velocimetry and finite element modeling”, Measurement, 159 (2020), 107796 | DOI

[4] M. Abshirini, N. Soltani, P. Marashizadeh, “On the mode I fracture analysis of cracked Brazilian disc using a digital image correlation method”, Optics and Lasers in Engineering, 78 (2016), 99–105 | DOI

[5] S. Kundu, A. Stroisz, S. Pradhan, “A simple discrete-element-model of Brazilian test”, The European Physical Journal B, 89 (2016), 130-1–130-7 | DOI

[6] W. C. Zhu, C. A. Tang, “Numerical simulation of Brazilian disk rock failure under static and dynamic loading”, International Journal of Rock Mechanics Mining Sciences, 43 (2006), 236–252 | DOI

[7] M. Mousavi Nezhad, Q. J. Fisher, E. Gironacci, M. Rezania, “Experimental study and numerical modeling of fracture propagation in shale rocks during Brazilian disk test”, Rock Mechanics and Rock Engineering, 51 (2018), 1755–1775 | DOI

[8] O. M. Jadaan, A. A. Wereszczak, Effective Size Analysis of the Diametral Compression (Brazil) Test Specimen, Report ORNL-TM-2009/100, Oak Ridge National Laboratory, Oak Ridge, TN, 2009, 39 pp.

[9] S. Reddy, P. G. Mukunda, K. Aithal, P. B. Shetty, “Strength evaluation of flake and spheroidal graphite cast irons using diametral compression test”, Journal of Materials Research and Technology, 6:1 (2017), 96–100 | DOI | MR

[10] F. Galvez, J. Rodriguez, V. Sanchez, “Tensile strength measurements of ceramic materials at high rates of strain”, Journal de Physique IV Proceedings, EDP Sciences, 07:C3 (1997), C3-151–C3-156 | DOI

[11] M. F. Bouali, M. Bouassida, “Numerical Simulation of the effect of loading angle on initial cracks position point: Application to the Brazilian test”, Applied Sciences, 11:8 (2021), 3573-1–3573-21 | DOI

[12] S. Torquato, Random Heterogeneous Materials: Microstructures and Macroscopic Properties, Springer, New York, 2002, 724 pp.

[13] S. Rahman, “A random field model for generating synthetic microstructures of functionally graded materials”, The International Journal for Numerical Methods in Engineering, 76:7 (2008), 972–993 | DOI | Zbl

[14] C. L.Y. Yeong, S. Torquato, “Reconstructing random media”, Physical Review E, 57:1 (1998), 495–506 | DOI | MR

[15] M. Sahimia, P. Tahmasebib, “Reconstruction, optimization, and design of heterogeneous materials and media: Basic principles, computational algorithms, and applications”, Physics Reports, 939 (2021), 1–82 | DOI | MR

[16] B. Bochenek, R. Pyrz, “Reconstruction of random microstructures — A stochastic optimization problem”, Computational Materials Science, 31:1 (2004), 93–112 | DOI

[17] J. A. Quiblier, “A new three-dimensional modeling technique for studying porous media”, Journal of Colloid and Interface Science, 98:1 (1984), 84–102 | DOI

[18] J. Feng, C. Li, S. Cen, D. Owen, “Statistical reconstruction of two-phase random media”, Computers Structures, 137 (2014), 78–92 | DOI

[19] J. Feng, S. Cen, C. Li, D. Owen, “Statistical reconstruction and Karhunen-Loeve expansion for multiphase random media”, The International Journal for Numerical Methods in Engineering, 105:1 (2016), 3–32 | DOI | Zbl

[20] I. N. Sevostyanova, T. Yu. Sablina, A. G. Burlachenko, S. N. Kulkov, “Mekhanika deformirovaniya i razrusheniya kompozita WC-(Fe-Mn-C) pri osevom szhatii”, Fizicheskaya mezomekhanika, 24:6 (2021), 50–57 | DOI

[21] V. V. Skripnyak, K. V. Iokhim, V. A. Skripnyak, “Lokalizatsiya plasticheskoi deformatsii tekhnicheski chistogo titana v slozhnom napryazhennom sostoyanii pri vysokoskorostnom rastyazhenii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 70, 89–102 | DOI

[22] M. A. Tashkinov, A. S. Shalimov, “Modelirovanie vliyaniya mikromasshtabnykh morfologicheskikh parametrov na deformatsionnoe povedenie poristykh materialov s metallicheskoi matritsei”, Fizicheskaya mezomekhanika, 24:5 (2021), 130–137 | DOI

[23] R. A. Bakeev, P. V. Makarov, A. Yu. Peryshkin, V. V. Promakhov, A. S. Zhukov, O. G. Klimova-Korsmik, “Eksperimentalnoe i chislennoe izuchenie mekhanicheskikh svoistv i osobennostei deformirovaniya i razrusheniya metallokeramicheskogo kompozita TiNi-TiB$_2$, poluchennogo metodom pryamogo lazernogo vyraschivaniya”, Fizicheskaya mezomekhanika, 21:5 (2018), 56–66 | DOI

[24] M. A. Anisimova, A. G. Knyazeva, “Otsenka napryazhenii i deformatsii v protsesse formirovaniya perekhodnogo sloya mezhdu chastitsei i matritsei”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 63, 60–71 | DOI | MR

[25] V. A. Mikushina, I. Yu. Smolin, “Chislennoe modelirovanie deformirovaniya i razrusheniya poristoi alyumooksidnoi keramiki na mezourovne”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 58, 99–108 | DOI | MR

[26] L. I. Sedov, Mekhanika sploshnoi sredy, v 2 t., Lan, SPb., 2004, 528, 560 pp.

[27] M. L. Wilkins, Computer Simulation of Dynamic Phenomena, Springer-Verlag, Berlin, 1999, 246 pp. | Zbl

[28] M. Schlather, A. Malinowski, P. J. Menck, M. Oesting, Strokorb K., “Analysis, simulation and prediction of multivariate random fields with package Random Fields”, Journal of Statistical Software, 63:8 (2015), 1–25 | DOI

[29] Smolin I.Yu, V. A. Zimina, T. Yu. Sablina, I. N. Sevostyanova, V. V. Gorbatenko, S. N. Kulkov, “Experimental and numerical investigation of strain inhomogeneity in zirconia during a Brazilian test”, International Journal of Solids and Structures, 256 (2022), 111978 | DOI

[30] S. N. Kulkov, I. Yu. Smolin, V. A. Mikushina, T. Yu. Sablina, I. N. Sevostyanova, V. V. Gorbatenko, “Issledovanie lokalizatsii deformatsii v khrupkikh materialakh pri ikh ispytaniyakh metodom «brazilskogo testa»”, Izvestiya vuzov. Fizika, 63:6 (750) (2020), 70–76 | DOI

[31] U. Ayachit, The ParaView Guide: A Parallel Visualization Application, Kitware Inc, 2015, 276 pp.