Mots-clés : pollutant transport
@article{VTGU_2023_85_a8,
author = {E. A. Danilkin and D. V. Leshchinsky and A. V. Starchenko},
title = {A microscale mathematical model of a non-isothermal turbulent flow and transport of a passive gaseous pollutant in a street canyon},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {117--131},
year = {2023},
number = {85},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_85_a8/}
}
TY - JOUR AU - E. A. Danilkin AU - D. V. Leshchinsky AU - A. V. Starchenko TI - A microscale mathematical model of a non-isothermal turbulent flow and transport of a passive gaseous pollutant in a street canyon JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 117 EP - 131 IS - 85 UR - http://geodesic.mathdoc.fr/item/VTGU_2023_85_a8/ LA - ru ID - VTGU_2023_85_a8 ER -
%0 Journal Article %A E. A. Danilkin %A D. V. Leshchinsky %A A. V. Starchenko %T A microscale mathematical model of a non-isothermal turbulent flow and transport of a passive gaseous pollutant in a street canyon %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 117-131 %N 85 %U http://geodesic.mathdoc.fr/item/VTGU_2023_85_a8/ %G ru %F VTGU_2023_85_a8
E. A. Danilkin; D. V. Leshchinsky; A. V. Starchenko. A microscale mathematical model of a non-isothermal turbulent flow and transport of a passive gaseous pollutant in a street canyon. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 117-131. http://geodesic.mathdoc.fr/item/VTGU_2023_85_a8/
[1] A. J. Cohen, M. Brauer, R. Burnett, H. R. Anderson, J. Frostad, K. Estep, K. Balakrishnan, B. Brunekreef, L. Dandona, R. Dandona, V. Feigin, G. Freedman, B. Hubbell, A. Jobling, H. Kan, L. Knibbs, Y. Liu, R. Martin, L. Morawska, C. A. Pope 3rd, H. Shin, K. Straif, G. Shaddick, M. Thomas, R. van Dingenen, A. van Donkelaar, T. Vos, C.J.L. Murray, M.H. Forouzanfar, “Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015”, Lancet, 389:10082 (2017), 1907–1918 | DOI
[2] K. Nakajima, R. Ooka, H. Kikumoto, “Evaluation of k-$\varepsilon$ Reynolds stress modeling in an idealized urban canyon using LES”, Journal of Wind Engineering and Industrial Aerodynamics, 175 (2018), 213–228 | DOI
[3] M. Lateb, R. N. Meroney, M. Yataghene, H. Fellouah, F. Saleh, M. C. Boufadel, “On the use of numerical modelling for near-field pollutant dispersion in urban environments – A review”, Environmental Pollution, 208:A (2016), 271–283 | DOI
[4] L. W. Chew, L. R. Glicksman, L. K. Norford, “Buoyant flows in street canyons: Comparison of RANS and LES at reduced and full scales”, Building and Environment, 146 (2018), 77–87 | DOI
[5] A. V. Starchenko, E. A. Danilkin, D. V. Leschinskii, “Chislennoe modelirovanie rasprostraneniya vybrosov avtotransporta v ulichnom kanone”, Matematicheskoe modelirovanie, 34:10 (2022), 81–94 | DOI | Zbl
[6] V. D. Meshkova, A. A. Dekterev, S. A. Filimonov, K. Yu. Litvintsev, “SigmaFlow kak instrument issledovaniya vetrovogo komforta v usloviyakh gorodskoi sredy”, Zhurnal Sibirskogo federalnogo universiteta. Ser. Tekhnika i tekhnologii, 15:4 (2022), 490–504 | DOI
[7] R. A.W. M. Henkes, F. F. van der Flugt, C. J. Hoogendoorn, “Natural Convection Flow in a Square Cavity Calculated with Low-Reynolds-Number Turbulence Models”, Int. J. Heat Mass Transfer, 34:2 (1991), 377–388 | DOI
[8] B. E. Launder, D. B. Spalding, “The numerical computation of turbulent flows”, Computational Methods in Applied Mechanics and Engineering, 3:2 (1974), 269–289 | DOI | Zbl
[9] B. Van Leer, “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second order scheme”, Journal of Computational Physics, 14 (1974), 361–370 | DOI | Zbl
[10] S. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publ. Corporation, New York, 1980, 214 pp. | DOI | Zbl
[11] A. V. Starchenko, R. B. Nuterman, E. A. Danilkin, Chislennoe modelirovanie turbulentnykh techenii i perenosa primesi v ulichnykh kanonakh, Izd-vo Tom. un-ta, Tomsk, 2015, 252 pp.
[12] J. Allegrini, V. Dorer, J. Carmeliet, “Wind tunnel measurements of buoyant flows in street canyons”, Building and Environment, 59 (2013), 315–326 | DOI
[13] H. Kikumoto, R. Ooka, “Large-eddy simulation of pollutant dispersion in a cavity at fine grid resolutions”, Building and Environment, 127 (2018), 127–137 | DOI
[14] P. Wang, D. Zhao, W. Wang, H. Mu, G. Cai, C. Liao, “Thermal Effect on Pollutant Dispersion in an Urban Street Canyon”, Int. J. Environ. Res., 5:3 (2011), 813–820 | DOI
[15] L. Chen, J. Hang, G. Chen, S. Liu, Y. Lin, M. Mattsson, M. Sandberg, H. Ling, “Numerical investigations of wind and thermal environment in 2D scaled street canyons with various aspect ratios and solar wall heating”, Building and Environment, 189 (2021), 107510 | DOI
[16] A. V. Starchenko, E. A. Danilkin, A. A. Semenova, D. V. Leschinskii, “Chislennoe modelirovanie turbulentnogo techeniya v ulichnom kanone pri smeshannoi konvektsii”, Devyataya Sibirskaya konferentsiya po parallelnym i vysokoproizvoditelnym vychisleniyam, sb. st., Izd. Dom Tom. gos. un-ta, Tomsk, 2017, 70–77