A microscale mathematical model of a non-isothermal turbulent flow and transport of a passive gaseous pollutant in a street canyon
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 117-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is devoted to the description and testing of the developed numerical microscale mathematical model of a non-isothermal turbulent flow and transport of a passive gaseous pollutant in street canyons and city blocks. The model is successfully applied to consider three-dimensional turbulent steady flows in a wind tunnel with a heated groove and in a cavern channel with a pollutant supply, for which measurements are available. A comparison of the calculated results, experimental data, and calculations obtained using ANSYS Fluent demonstrates the validity of the numerical model. The model is used to calculate and analyze the fields of wind speed and pollutant concentration, as well as the integral characteristics of the pollutant concentration in a street canyon as a whole and in a breathing zone (up to 2 meters above the canyon bottom) with partial or overall heating of the windward wall of the canyon. The flow structure and the observed maximum and average concentrations of the pollutants are found to depend significantly on the size of the heated part of the windward canyon wall.
Keywords: turbulence modeling, street canyon, non-isothermality, numerical calculations.
Mots-clés : pollutant transport
@article{VTGU_2023_85_a8,
     author = {E. A. Danilkin and D. V. Leshchinsky and A. V. Starchenko},
     title = {A microscale mathematical model of a non-isothermal turbulent flow and transport of a passive gaseous pollutant in a street canyon},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {117--131},
     year = {2023},
     number = {85},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_85_a8/}
}
TY  - JOUR
AU  - E. A. Danilkin
AU  - D. V. Leshchinsky
AU  - A. V. Starchenko
TI  - A microscale mathematical model of a non-isothermal turbulent flow and transport of a passive gaseous pollutant in a street canyon
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 117
EP  - 131
IS  - 85
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_85_a8/
LA  - ru
ID  - VTGU_2023_85_a8
ER  - 
%0 Journal Article
%A E. A. Danilkin
%A D. V. Leshchinsky
%A A. V. Starchenko
%T A microscale mathematical model of a non-isothermal turbulent flow and transport of a passive gaseous pollutant in a street canyon
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 117-131
%N 85
%U http://geodesic.mathdoc.fr/item/VTGU_2023_85_a8/
%G ru
%F VTGU_2023_85_a8
E. A. Danilkin; D. V. Leshchinsky; A. V. Starchenko. A microscale mathematical model of a non-isothermal turbulent flow and transport of a passive gaseous pollutant in a street canyon. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 117-131. http://geodesic.mathdoc.fr/item/VTGU_2023_85_a8/

[1] A. J. Cohen, M. Brauer, R. Burnett, H. R. Anderson, J. Frostad, K. Estep, K. Balakrishnan, B. Brunekreef, L. Dandona, R. Dandona, V. Feigin, G. Freedman, B. Hubbell, A. Jobling, H. Kan, L. Knibbs, Y. Liu, R. Martin, L. Morawska, C. A. Pope 3rd, H. Shin, K. Straif, G. Shaddick, M. Thomas, R. van Dingenen, A. van Donkelaar, T. Vos, C.J.L. Murray, M.H. Forouzanfar, “Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015”, Lancet, 389:10082 (2017), 1907–1918 | DOI

[2] K. Nakajima, R. Ooka, H. Kikumoto, “Evaluation of k-$\varepsilon$ Reynolds stress modeling in an idealized urban canyon using LES”, Journal of Wind Engineering and Industrial Aerodynamics, 175 (2018), 213–228 | DOI

[3] M. Lateb, R. N. Meroney, M. Yataghene, H. Fellouah, F. Saleh, M. C. Boufadel, “On the use of numerical modelling for near-field pollutant dispersion in urban environments – A review”, Environmental Pollution, 208:A (2016), 271–283 | DOI

[4] L. W. Chew, L. R. Glicksman, L. K. Norford, “Buoyant flows in street canyons: Comparison of RANS and LES at reduced and full scales”, Building and Environment, 146 (2018), 77–87 | DOI

[5] A. V. Starchenko, E. A. Danilkin, D. V. Leschinskii, “Chislennoe modelirovanie rasprostraneniya vybrosov avtotransporta v ulichnom kanone”, Matematicheskoe modelirovanie, 34:10 (2022), 81–94 | DOI | Zbl

[6] V. D. Meshkova, A. A. Dekterev, S. A. Filimonov, K. Yu. Litvintsev, “SigmaFlow kak instrument issledovaniya vetrovogo komforta v usloviyakh gorodskoi sredy”, Zhurnal Sibirskogo federalnogo universiteta. Ser. Tekhnika i tekhnologii, 15:4 (2022), 490–504 | DOI

[7] R. A.W. M. Henkes, F. F. van der Flugt, C. J. Hoogendoorn, “Natural Convection Flow in a Square Cavity Calculated with Low-Reynolds-Number Turbulence Models”, Int. J. Heat Mass Transfer, 34:2 (1991), 377–388 | DOI

[8] B. E. Launder, D. B. Spalding, “The numerical computation of turbulent flows”, Computational Methods in Applied Mechanics and Engineering, 3:2 (1974), 269–289 | DOI | Zbl

[9] B. Van Leer, “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second order scheme”, Journal of Computational Physics, 14 (1974), 361–370 | DOI | Zbl

[10] S. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publ. Corporation, New York, 1980, 214 pp. | DOI | Zbl

[11] A. V. Starchenko, R. B. Nuterman, E. A. Danilkin, Chislennoe modelirovanie turbulentnykh techenii i perenosa primesi v ulichnykh kanonakh, Izd-vo Tom. un-ta, Tomsk, 2015, 252 pp.

[12] J. Allegrini, V. Dorer, J. Carmeliet, “Wind tunnel measurements of buoyant flows in street canyons”, Building and Environment, 59 (2013), 315–326 | DOI

[13] H. Kikumoto, R. Ooka, “Large-eddy simulation of pollutant dispersion in a cavity at fine grid resolutions”, Building and Environment, 127 (2018), 127–137 | DOI

[14] P. Wang, D. Zhao, W. Wang, H. Mu, G. Cai, C. Liao, “Thermal Effect on Pollutant Dispersion in an Urban Street Canyon”, Int. J. Environ. Res., 5:3 (2011), 813–820 | DOI

[15] L. Chen, J. Hang, G. Chen, S. Liu, Y. Lin, M. Mattsson, M. Sandberg, H. Ling, “Numerical investigations of wind and thermal environment in 2D scaled street canyons with various aspect ratios and solar wall heating”, Building and Environment, 189 (2021), 107510 | DOI

[16] A. V. Starchenko, E. A. Danilkin, A. A. Semenova, D. V. Leschinskii, “Chislennoe modelirovanie turbulentnogo techeniya v ulichnom kanone pri smeshannoi konvektsii”, Devyataya Sibirskaya konferentsiya po parallelnym i vysokoproizvoditelnym vychisleniyam, sb. st., Izd. Dom Tom. gos. un-ta, Tomsk, 2017, 70–77