Influence of the solar radiation pressure and the Yarkovsky effect on the resonant behavior of asteroids with small perihelion distances
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 101-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the impact of the Yarkovsky effect and solar radiation pressure on the resonant behavior of three asteroids with small perihelion distances (3200 Phaethon, 394130 2006 HY51, and 137924 2000 BD19) is studied. The corresponding physical parameters are determined to estimate the effect of the solar radiation pressure. The Yarkovsky effect and the solar radiation pressure effect are estimated by comparing the results of the orbital evolution of the asteroids with the main force model and the included estimated perturbation. The application of different force models shows that accounting for the Yarkovsky effect and solar radiation pressure has a slight impact on the evolution of the orbital elements of the asteroids while changing the semimajor axis behavior at the ends of the study interval. This impact changes the approaches of the asteroids to planets. It is revealed that the impact of the Yarkovsky effect is stronger than that of the solar radiation pressure. The evolution of the OMEGNO chaoticity parameter shows that the perturbations do not affect the predictability of the motion interval, but in some cases lead to deceleration or acceleration in growth of the parameter. The studied perturbations have no significant effect on the secular (apsidal-nodal) resonance characteristics due to a weak impact on the evolution of the orbital elements underlying their calculations.
Keywords: asteroids with small perihelion distances, mean-motion resonance, apsidalnodal resonance
Mots-clés : orbital evolution.
@article{VTGU_2023_85_a7,
     author = {T. Yu. Galushina and O. N. Lenter and O. M. Syusina},
     title = {Influence of the solar radiation pressure and the {Yarkovsky} effect on the resonant behavior of asteroids with small perihelion distances},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {101--116},
     year = {2023},
     number = {85},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_85_a7/}
}
TY  - JOUR
AU  - T. Yu. Galushina
AU  - O. N. Lenter
AU  - O. M. Syusina
TI  - Influence of the solar radiation pressure and the Yarkovsky effect on the resonant behavior of asteroids with small perihelion distances
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 101
EP  - 116
IS  - 85
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_85_a7/
LA  - ru
ID  - VTGU_2023_85_a7
ER  - 
%0 Journal Article
%A T. Yu. Galushina
%A O. N. Lenter
%A O. M. Syusina
%T Influence of the solar radiation pressure and the Yarkovsky effect on the resonant behavior of asteroids with small perihelion distances
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 101-116
%N 85
%U http://geodesic.mathdoc.fr/item/VTGU_2023_85_a7/
%G ru
%F VTGU_2023_85_a7
T. Yu. Galushina; O. N. Lenter; O. M. Syusina. Influence of the solar radiation pressure and the Yarkovsky effect on the resonant behavior of asteroids with small perihelion distances. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 101-116. http://geodesic.mathdoc.fr/item/VTGU_2023_85_a7/

[1] K. Myurrei, S. Dermott, Dinamika Solnechnoi sistemy, Fizmatlit, M., 2009, 588 pp.

[2] D. Nesvorny, S. Ferraz-Mello, M. Holman, A. Morbidelli, “Regular and Chaotic Dynamics in the Mean-Motion Resonances: Implications for the Structure and Evolution of the Asteroid Belt”, Asteroids III, eds. W. F. Bottke, A. Cellino, P. Paolicchi, R. P. Binzel, University of Arizona Press, Tucson, 2003, 379–394

[3] M. Li, Y. Huang, Gong Sh., “Assessing the risk of potentially hazardous asteroids through mean motion resonances analyses”, Astrophysics and Space Science, 364:5 (2019), 78, 12 pp. | DOI

[4] V. V. Emelyanenko, “Asteroidy, sblizhayuschiesya s Solntsem”, Astronomicheskii vestnik. Issledovaniya Solnechnoi sistemy, 51:1 (2017), 67–71 | DOI | MR

[5] A. Toliou, M. Granvik, “Dynamical evolution of near-Earth objects”, Europlanet Science Congress (21 Sept.–9 Oct. 2020), 2020, EPSC2020-1104 | DOI

[6] A. V. Devyatkin, D. L. Gorshanov, S. N. Petrova, A. A. Martyusheva, V. N. L'vov, S. D. Tsekmeister, “Astrometry and photometry of potentially hazardous asteroid (276033) 2002 AJ129”, Planetary and Space Science, 213 (2022), 105427 | DOI

[7] D. Farnocchia et al, “Near-Earth Asteroids with measurable Yarkovsky effect”, Icarus, 224:1 (2013), 1–13 | DOI | MR

[8] A. I. Panasenko, Yu. A. Chernetenko, “Modelirovanie vliyaniya effekta Yarkovskogo na dvizhenie asteroidov”, Trudy IPA RAN, 2014, no. 31, 59–65

[9] T. Yu. Galushina, O. N. Letner, O. M. Syusina, E. N. Niganova, “Vliyanie effekta Yarkovskogo na orbitalnye rezonansy asteroidov s malymi perigeliinymi rasstoyaniyami”, Izvestiya vuzov. Fizika, 65:5 (774) (2022), 105–112 | DOI

[10] E. Everhart, “An efficient integrator that uses Gauss-Radau spacings”, Dynamics of comets: their origin and evolution, Proc. 83rd IAU Colloq. (Rome, 11-15 June 1984), eds. A. Carusi, G.B. Valsecchi, D. Reidel Publ. Co., Dordrecht, 1985, 185–202 | DOI

[11] V. A. Avdyushev, “Integrator Gaussa-Everkharta”, Vychislitelnye tekhnologii, 15:4 (2010), 31–46 | Zbl

[12] T. Yu. Galushina, O. N. Letner, “Modified version of IDA software and its application to the study of the motion of asteroid 2007 PR10”, Astronomical and Astrophysical Transactions, 32:4 (2021), 355–370 | DOI

[13] V. A. Avdyushev, “Kollokatsionnyi integrator Lobbie v zadachakh orbitalnoi dinamiki”, Astronomicheskii vestnik, 56:1 (2022), 36–46 | DOI

[14] V. A. Shefer, A. M. Koksin, “Vychislenie pokazatelei khaotichnosti orbit, osnovannykh na kasatelnykh vektorakh: primenenie k ogranichennoi zadache trekh tel”, Izvestiya vuzov. Fizika, 56:6/3 (2013), 256–258

[15] E. A. Grebenikov, Yu. A. Ryabov, Rezonansy i malye znamenateli v nebesnoi mekhanike, Nauka, M., 1978, 128 pp.

[16] J. Hanus, D. Vokrouhlicky, M. Delbo', D. Farnocchia, D. Pravec P. Polishook, K. Hornoch, H. Kucakova, P. Kusnirak, R. Stephens, B. Warner, “(3200) Phaethon: Bulk density from Yarkovsky drift detection”, Astronomy Astrophysics, 620 (2018), L8, 8 pp. | DOI

[17] A. H. Greenberg, J. L. Margot, A. K. Verma, P. A. Taylor, S. E. Hodge, “Yarkovsky Drift Detections for 247 Near-Earth Asteroids”, The Astronomical Journal, 159 (2020), 92, 21 pp. | DOI

[18] O. N. Letner, T. Y. Galushina, “Motion features of the asteroid 137924 2000 BD19”, Planetary and Space Science, 181 (2020), 104818 | DOI

[19] T. Y. Galushina, O. N. Letner, E. N. Niganova, “Notes on force models for near-Sun asteroids”, Planetary and Space Science, 202 (2021), 105232 | DOI