Theoretical and experimental studies of the classification process depending on the nature of the high-speed interaction of
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 74-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For grinding and fractionation of submicron and nanosized powders, pneumatic methods with the use of built-in centrifugal-type separation elements of various designs are currently the most promising. In these devices, it is possible to most effectively provide the aerodynamics of the dust and gas flow in the separation zone, which allows one to control the separation boundary. In a fluidized bed apparatus, the layer extends to the rotor. The particles are affected not only by gravity and flow forces but also by the forces arising from the rotor impact on the flow. This paper considers the separation effects associated with the classification of fine powders. Experimental data on the circumferential air velocities near the rotor surface are obtained as the functions of the rotor rotation number. The high-speed interactions of solid particles in a pneumatic grinder with a fluidized bed are evaluated. Using the obtained aerodynamic experimental data, the boundary size of the separated particles is calculated. A comparison of the calculated boundary size of TiN ceramic particles with the obtained experimental data on the fractional separation of fine TiN powders based on granulometric composition measurements by laser diffraction is presented.
Keywords: pneumogrinder, fluidized bed, boundary size, separation of particles, velocity vector components.
Mots-clés : titanium nitride
@article{VTGU_2023_85_a5,
     author = {M. V. Vasilevskiy and V. A. Polyushko and V. I. Romandin and N. S. Evseev and I. A. Zhukov and M. Kh. Ziatdinov and E. S. Marchenko and L. A. Zhilina},
     title = {Theoretical and experimental studies of the classification process depending on the nature of the high-speed interaction of},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {74--89},
     year = {2023},
     number = {85},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_85_a5/}
}
TY  - JOUR
AU  - M. V. Vasilevskiy
AU  - V. A. Polyushko
AU  - V. I. Romandin
AU  - N. S. Evseev
AU  - I. A. Zhukov
AU  - M. Kh. Ziatdinov
AU  - E. S. Marchenko
AU  - L. A. Zhilina
TI  - Theoretical and experimental studies of the classification process depending on the nature of the high-speed interaction of
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 74
EP  - 89
IS  - 85
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_85_a5/
LA  - ru
ID  - VTGU_2023_85_a5
ER  - 
%0 Journal Article
%A M. V. Vasilevskiy
%A V. A. Polyushko
%A V. I. Romandin
%A N. S. Evseev
%A I. A. Zhukov
%A M. Kh. Ziatdinov
%A E. S. Marchenko
%A L. A. Zhilina
%T Theoretical and experimental studies of the classification process depending on the nature of the high-speed interaction of
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 74-89
%N 85
%U http://geodesic.mathdoc.fr/item/VTGU_2023_85_a5/
%G ru
%F VTGU_2023_85_a5
M. V. Vasilevskiy; V. A. Polyushko; V. I. Romandin; N. S. Evseev; I. A. Zhukov; M. Kh. Ziatdinov; E. S. Marchenko; L. A. Zhilina. Theoretical and experimental studies of the classification process depending on the nature of the high-speed interaction of. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 74-89. http://geodesic.mathdoc.fr/item/VTGU_2023_85_a5/

[1] A. V. Shvab, V. Yu. Khairullina, “Issledovanie vliyaniya nestatsionarnogo zakruchennogo turbulentnogo techeniya na dvizhenie odinochnoi tverdoi chastitsy”, Prikladnaya mekhanika i tekhnicheskaya fizika, 52:1 (305) (2011), 47–53 | MR | Zbl

[2] M. Ghadiri, J. Van Impe, “Numerical simulation of particle dynamics in a spiral jet mill via coupled CFD-DEM”, Pharmaceutics, 13:7 (2021), 937 | DOI

[3] V. I. Akunov, Struinye melnitsy, Mashinostroenie, M., 1967, 262 pp.

[4] K. V. Fedotov, V. I. Dmitriev, “Izmenenie tekhnologicheskikh svoistv rudy pri izmelchenii v protivotochno-vikhrevykh struyakh”, Izvestiya vuzov. Gornyi zhurnal, 2010, no. 5, 129–132

[5] P. M. Silverberg, S. M. Sharon, “Homing in on the best size reduction metod”, Chemical Engineering, 105:123 (1998), 36

[6] Hosokawa Micron Ltd : prospekt korporatsii, (accessed: 23.11.2022) https://www.hosokawa-alpine.com/powder-particle-processing/machines/jet-mills/

[7] Yu. A. Biryukov, V. M. Buznik, G. E. Dunaevskii, I. V. Ivonin, A. N. Ischenko, M. I. Lerner, A. M. Lymar, A. Yu. Ob'edkov, S. G. Psakhe, A. K. Tsvetnikov, Ultradispersnye i nanorazmernye poroshki: sozdanie, stroenie, proizvodstvo i primenenie, ed. V.M. Buznik, Izd-vo NTL, Tomsk, 2009, 192 pp.

[8] Yu. A. Buevich, G. A. Minaev, Struinoe psevdoozhizhenie, Khimiya, M., 1984, 136 pp.

[9] I. V. Postnikova, V. N. Blinichev, “Sistemnyi podkhod k raschetu protsessov v apparate kombinirovannogo deistviya”, Teoreticheskie osnovy khimicheskoi tekhnologii, 48:3 (2014), 241–248 | DOI

[10] B. M. Baloyan, A. G. Kolmakov, M. I. Alymov, A. M. Krotov, Nanomaterialy. Klassifikatsiya, osobennosti svoistv, primenenie i tekhnologii polucheniya, Mezhdunar. un-t prirody, obschestva i cheloveka «Dubna», Filial «Ugresha», M., 2007, 125 pp.

[11] V. G. Karadzhi, Yu. G. Moskovko, Ventilyatsionnoe oborudovanie : tekhnicheskie rekomen datsii dlya proektirovschikov i montazhnikov, AVOK-PRESS, M., 2010, 421 pp.

[12] M. V. Vasilevskii, Obespylivanie gazov inertsionnymi apparatami, Izd-vo Tom. politekhn. un-ta, Tomsk, 2008, 248 pp.

[13] A. T. Roslyak, P. N. Zyatikov, Vozdushno-tsentrobezhnaya klassifikatsiya mikroporoshkov, TML-press, Tomsk, 2010, 224 pp.

[14] R. R. Sharapov, V. S. Prokopenko, “Modeling of the separation process in dynamic separators”, World Applied Sciences Journal, 25:3 (2013), 536–542 | DOI

[15] G. Crawley, A. Malcolmson, I. Crosley, A. McLeich, “Particle Classification: Making the Grade”, Chemical Engineering, 109:4 (2002), 54–60

[16] A. D. Zimon, “Adgeziya i autogeziya chastits. Zavisimost adgezii i autogezii chastits muki ot davleniya kontakta”, Izvestiya vuzov. Pischevaya tekhnologiya, 1991, no. 1–3 (200–202), 113–116

[17] Yu. A. Biryukov, L. N. Bogdanov, A. Yu. Ob'edkov, V. A. Polyushko, A. Yu. Biryukov, A. V. Gryazev, O. L. Khasanov, “Effektivnoe vydelenie ultradispersnykh poroshkov pnevmotsirkulya tsionnymi metodami”, Izvestiya vuzov. Fizika, 55:7-2 (2012), 34–37

[18] I. M. Razumov, Psevdoozhizhenie i pnevmotransport sypuchikh materialov, 2-e izd., pe rerab. i dop., Khimiya, M., 1972, 239 pp.

[19] G. N. Abramovich, T. A. Girshovich, S. Yu. Krashennikov, A. N. Sekundov, I. P. Smirnova, Teoriya turbulentnykh strui, 2-e izd., pererab. i dop., ed. G.N. Abramovich, Nauka, M., 1984, 717 pp.

[20] N. S. Evseev, I. A. Zhukov, “Vliyanie turbulentnykh pulsatsii na protsess fraktsionnogo razdeleniya melkodispersnykh poroshkov nitridov metallov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 72, 70–79 | DOI

[21] L. G. Loitsyanskii, Mekhanika zhidkosti i gaza, Nauka, M., 1973, 848 pp.