Mots-clés : graphite structures
@article{VTGU_2023_85_a3,
author = {V. A. Andryushchenko and E. V. Boyko and S. Z. Sakhapov and M. S. Skirda and D. V. Smovzh},
title = {A study of jet formation during the sputtering of electrodes in an arc discharge for the different currents},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {43--57},
year = {2023},
number = {85},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_85_a3/}
}
TY - JOUR AU - V. A. Andryushchenko AU - E. V. Boyko AU - S. Z. Sakhapov AU - M. S. Skirda AU - D. V. Smovzh TI - A study of jet formation during the sputtering of electrodes in an arc discharge for the different currents JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 43 EP - 57 IS - 85 UR - http://geodesic.mathdoc.fr/item/VTGU_2023_85_a3/ LA - ru ID - VTGU_2023_85_a3 ER -
%0 Journal Article %A V. A. Andryushchenko %A E. V. Boyko %A S. Z. Sakhapov %A M. S. Skirda %A D. V. Smovzh %T A study of jet formation during the sputtering of electrodes in an arc discharge for the different currents %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 43-57 %N 85 %U http://geodesic.mathdoc.fr/item/VTGU_2023_85_a3/ %G ru %F VTGU_2023_85_a3
V. A. Andryushchenko; E. V. Boyko; S. Z. Sakhapov; M. S. Skirda; D. V. Smovzh. A study of jet formation during the sputtering of electrodes in an arc discharge for the different currents. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 43-57. http://geodesic.mathdoc.fr/item/VTGU_2023_85_a3/
[1] M. Keidar, “Factors affecting synthesis of single wall carbon nanotubes in arc discharge”, Journal of Physics D: Applied Physics, 40:8 (2007), 2388–2393 | DOI
[2] Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, S. Iijima, “Mass production of single-wall carbon nanotubes by the arc plasma jet method”, Chemical Physics Letters, 323:5–6 (2000), 580–585 | DOI
[3] J. H.J. Scott, S. A. Majetich, “Morphology, structure, and growth of nanoparticles produced in a carbon arc”, Physical Review B, 52:17 (1995), 12564–12571 | DOI
[4] V. A. Maltsev, S. A. Novopashin, O. A. Nerushev, S. Z. Sakhapov, D. V. Smovzh, “Sintez metallicheskikh nanochastits na uglerodnoi matritse”, Rossiiskie nanotekhnologii, 2:5-6 (2007), 85–89
[5] S. Farhat, C. D. Scott, “Review of the arc process modeling for fullerene and nanotube production”, Journal of Nanoscience and Nanotechnology, 6:5 (2006), 1189–1210 | DOI
[6] A. Lefort, M. J. Parizet, S. E. El-Fassi, M. Abbaoui, “Erosion of graphite electrodes”, Journal of Physics D: Applied Physics, 26:8 (1993), 1239–1243 | DOI
[7] J. F. Bilodeau, J. Pousse, A. Gleizes, “A mathematical model of the carbon arc reactor for fullerene synthesis”, Plasma chemistry and plasma processing, 18:2 (1998), 285–303 | DOI
[8] I. Hinkov, S. Farhat, C. D. Scott, “Influence of the gas pressure on single-wall carbon nanotube formation”, Carbon, 43:12 (2005), 2453–2462 | DOI
[9] N. I. Alekseev, G. A. Dyuzhev, “Dugovoi razryad s isparyayuschimsya anodom (pochemu rod bufernogo gaza vliyaet na protsess obrazovaniya fullurenov?)”, Zhurnal tekhnicheskoi fiziki, 71:10 (2001), 41–49
[10] N. I. Alekseev, “O mekhanizme obrazovaniya uglerodnykh nanotrubok. I. Termodinamika obrazovaniya kapel rasplava ugleroda v metallicheskom katalizatore”, Zhurnal tekhnicheskoi fiziki, 74:8 (2004), 45–50
[11] N. I. Alekseev, “O mekhanizme obrazovaniya uglerodnykh nanotrubok. II. Kinetika vzryvnoi kondensatsii kapel rasplava ugleroda v metallicheskom katalizatore”, Zhurnal tekhnicheskoi fiziki, 74:8 (2004), 51–57
[12] M. Keidar, I. I. Beilis, “Modeling of atmospheric-pressure anodic carbon arc producing carbon nanotubes”, Journal of Applied Physics, 106:10 (2009), 103304 | DOI
[13] M. Kundrapu, M. Keidar, “Numerical simulation of carbon arc discharge for nanoparticle synthesis”, Physics of Plasmas, 19:7 (2012), 073510 | DOI
[14] C. R. Wilke, “A viscosity equation for gas mixtures”, The journal of chemical physics, 18:4 (1950), 517–519 | DOI
[15] A. Kantarbaeva, K. M. Moiseeva, “Osobennosti rasprostraneniya plameni v ugle-propanovozdushnoi gazovzvesi”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 74, 95–102 | DOI
[16] S. T. Gouveia, F. V. Silva, L. M. Costa, A. R.A. Nogueira, J. A. Nobrega, “Determination of residual carbon by inductively-coupled plasma optical emission spectrometry with axial and radial view configurations”, Analytica Chimica Acta, 445:2 (2001), 269–275 | DOI
[17] A. Tanabashi, T. Amano, “New identification of the visible bands of the C2 Swan system”, Journal of Molecular Spectroscopy, 215:2 (2002), 285–294 | DOI
[18] J. S. Brooke, P. F. Bernath, T. W. Schmidt, G. B. Bacskay, “Line strengths and updated molecular constants for the C2 Swan system”, Journal of Quantitative Spectroscopy and Radiative Transfer, 124 (2013), 11–20 | DOI
[19] S. Gershman, Y. Raitses, “Unstable behavior of anodic arc discharge for synthesis of nanomaterials”, Journal of Physics D: Applied Physics, 49:34 (2016), 345201 | DOI
[20] F. Du, J. Yuan, M. Zhang, J. Li, Z. Li, M. Cao, J. Chen, L. Zhang, X. Liu, A. Gong, W. Xu, Q. Shao, “Nitrogen-doped carbon dots with heterogeneous multi-layered structures”, RSC Advances, 4:71 (2014), 37536–37541 | DOI
[21] P. A. Tesner, Obrazovanie ugleroda iz uglevodorodov gazovoi fazy, Khimiya, M., 1972