A study of jet formation during the sputtering of electrodes in an arc discharge for the different currents
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 43-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is devoted to experimental and theoretical studies of the sputtering of electrodes in an arc discharge. The temperature distribution in the working chamber during arc discharge is analyzed depending on the discharge current. On the basis of experimental data on the anode sublimation and interelectrode distance, a fan jet is simulated, which is generated during the anode sputtering in an arc discharge. The calculation is carried out using the model describing the processes occurring in the arc plasma, jet propagation, transport of particles by the jet and their ionization. The numerical simulation results for the radial temperature distribution are consistent with the experimental data. The experiments show that an increase in the discharge current leads to an increase in the concentration of fullerenes and graphite structures in the soot. Based on the simulation data, it is shown that this effect is a result of the longer residence time of growing carbon particles in a high-temperature zone (1000-2800 K) at high arc discharge currents.
Keywords: arc discharge, sputtering, carbon materials.
Mots-clés : graphite structures
@article{VTGU_2023_85_a3,
     author = {V. A. Andryushchenko and E. V. Boyko and S. Z. Sakhapov and M. S. Skirda and D. V. Smovzh},
     title = {A study of jet formation during the sputtering of electrodes in an arc discharge for the different currents},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {43--57},
     year = {2023},
     number = {85},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_85_a3/}
}
TY  - JOUR
AU  - V. A. Andryushchenko
AU  - E. V. Boyko
AU  - S. Z. Sakhapov
AU  - M. S. Skirda
AU  - D. V. Smovzh
TI  - A study of jet formation during the sputtering of electrodes in an arc discharge for the different currents
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 43
EP  - 57
IS  - 85
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_85_a3/
LA  - ru
ID  - VTGU_2023_85_a3
ER  - 
%0 Journal Article
%A V. A. Andryushchenko
%A E. V. Boyko
%A S. Z. Sakhapov
%A M. S. Skirda
%A D. V. Smovzh
%T A study of jet formation during the sputtering of electrodes in an arc discharge for the different currents
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 43-57
%N 85
%U http://geodesic.mathdoc.fr/item/VTGU_2023_85_a3/
%G ru
%F VTGU_2023_85_a3
V. A. Andryushchenko; E. V. Boyko; S. Z. Sakhapov; M. S. Skirda; D. V. Smovzh. A study of jet formation during the sputtering of electrodes in an arc discharge for the different currents. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 43-57. http://geodesic.mathdoc.fr/item/VTGU_2023_85_a3/

[1] M. Keidar, “Factors affecting synthesis of single wall carbon nanotubes in arc discharge”, Journal of Physics D: Applied Physics, 40:8 (2007), 2388–2393 | DOI

[2] Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, S. Iijima, “Mass production of single-wall carbon nanotubes by the arc plasma jet method”, Chemical Physics Letters, 323:5–6 (2000), 580–585 | DOI

[3] J. H.J. Scott, S. A. Majetich, “Morphology, structure, and growth of nanoparticles produced in a carbon arc”, Physical Review B, 52:17 (1995), 12564–12571 | DOI

[4] V. A. Maltsev, S. A. Novopashin, O. A. Nerushev, S. Z. Sakhapov, D. V. Smovzh, “Sintez metallicheskikh nanochastits na uglerodnoi matritse”, Rossiiskie nanotekhnologii, 2:5-6 (2007), 85–89

[5] S. Farhat, C. D. Scott, “Review of the arc process modeling for fullerene and nanotube production”, Journal of Nanoscience and Nanotechnology, 6:5 (2006), 1189–1210 | DOI

[6] A. Lefort, M. J. Parizet, S. E. El-Fassi, M. Abbaoui, “Erosion of graphite electrodes”, Journal of Physics D: Applied Physics, 26:8 (1993), 1239–1243 | DOI

[7] J. F. Bilodeau, J. Pousse, A. Gleizes, “A mathematical model of the carbon arc reactor for fullerene synthesis”, Plasma chemistry and plasma processing, 18:2 (1998), 285–303 | DOI

[8] I. Hinkov, S. Farhat, C. D. Scott, “Influence of the gas pressure on single-wall carbon nanotube formation”, Carbon, 43:12 (2005), 2453–2462 | DOI

[9] N. I. Alekseev, G. A. Dyuzhev, “Dugovoi razryad s isparyayuschimsya anodom (pochemu rod bufernogo gaza vliyaet na protsess obrazovaniya fullurenov?)”, Zhurnal tekhnicheskoi fiziki, 71:10 (2001), 41–49

[10] N. I. Alekseev, “O mekhanizme obrazovaniya uglerodnykh nanotrubok. I. Termodinamika obrazovaniya kapel rasplava ugleroda v metallicheskom katalizatore”, Zhurnal tekhnicheskoi fiziki, 74:8 (2004), 45–50

[11] N. I. Alekseev, “O mekhanizme obrazovaniya uglerodnykh nanotrubok. II. Kinetika vzryvnoi kondensatsii kapel rasplava ugleroda v metallicheskom katalizatore”, Zhurnal tekhnicheskoi fiziki, 74:8 (2004), 51–57

[12] M. Keidar, I. I. Beilis, “Modeling of atmospheric-pressure anodic carbon arc producing carbon nanotubes”, Journal of Applied Physics, 106:10 (2009), 103304 | DOI

[13] M. Kundrapu, M. Keidar, “Numerical simulation of carbon arc discharge for nanoparticle synthesis”, Physics of Plasmas, 19:7 (2012), 073510 | DOI

[14] C. R. Wilke, “A viscosity equation for gas mixtures”, The journal of chemical physics, 18:4 (1950), 517–519 | DOI

[15] A. Kantarbaeva, K. M. Moiseeva, “Osobennosti rasprostraneniya plameni v ugle-propanovozdushnoi gazovzvesi”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 74, 95–102 | DOI

[16] S. T. Gouveia, F. V. Silva, L. M. Costa, A. R.A. Nogueira, J. A. Nobrega, “Determination of residual carbon by inductively-coupled plasma optical emission spectrometry with axial and radial view configurations”, Analytica Chimica Acta, 445:2 (2001), 269–275 | DOI

[17] A. Tanabashi, T. Amano, “New identification of the visible bands of the C2 Swan system”, Journal of Molecular Spectroscopy, 215:2 (2002), 285–294 | DOI

[18] J. S. Brooke, P. F. Bernath, T. W. Schmidt, G. B. Bacskay, “Line strengths and updated molecular constants for the C2 Swan system”, Journal of Quantitative Spectroscopy and Radiative Transfer, 124 (2013), 11–20 | DOI

[19] S. Gershman, Y. Raitses, “Unstable behavior of anodic arc discharge for synthesis of nanomaterials”, Journal of Physics D: Applied Physics, 49:34 (2016), 345201 | DOI

[20] F. Du, J. Yuan, M. Zhang, J. Li, Z. Li, M. Cao, J. Chen, L. Zhang, X. Liu, A. Gong, W. Xu, Q. Shao, “Nitrogen-doped carbon dots with heterogeneous multi-layered structures”, RSC Advances, 4:71 (2014), 37536–37541 | DOI

[21] P. A. Tesner, Obrazovanie ugleroda iz uglevodorodov gazovoi fazy, Khimiya, M., 1972