On the inversion of nonlinear constitutive relations for hyperelastic anisotropic materials
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 157-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The polynomial elastic potentials represented by the power functions of their arguments are considered for hyperelastic anisotropic materials. The conditions for the elastic free energy $W(\varepsilon)$ and Gibbs potential $V(\mathbf{T})$ in isothermal processes are assigned so that the nonlinear constitutive relations can be inverted. For polynomial elastic potentials, whose coefficients are dependent on elastic constants of the second and third orders, a dependence between the coefficients of the potential $W(\varepsilon)$ (elasticity constants) and the coefficients of the potential $V(\mathbf{T})$ (elastic compliances) is obtained. The relationships between the elastic constants and the coefficients of elastic compliance of the second and third orders for an isotropic material and for an anisotropic material corresponding to a cubic crystallographic system are found. For a copper crystal belonging to the cubic system, uniaxial loading along one of the anisotropy axes is considered. The stress-strain dependence obtained from direct and inverted relations coincides in the vicinity of zero. The stress-strain dependence calculated using direct and inverted relations for copper crystals has made it possible to determine the strain range in which the results of calculations using direct and inverted relations differ by less than 5%.
Keywords: anisotropy, hyperelasicity, finite strains, tensor bases, nonlinear constitutive relations.
@article{VTGU_2023_85_a11,
     author = {M. Yu. Sokolova and D. V. Khristich},
     title = {On the inversion of nonlinear constitutive relations for hyperelastic anisotropic materials},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {157--167},
     year = {2023},
     number = {85},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_85_a11/}
}
TY  - JOUR
AU  - M. Yu. Sokolova
AU  - D. V. Khristich
TI  - On the inversion of nonlinear constitutive relations for hyperelastic anisotropic materials
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 157
EP  - 167
IS  - 85
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_85_a11/
LA  - ru
ID  - VTGU_2023_85_a11
ER  - 
%0 Journal Article
%A M. Yu. Sokolova
%A D. V. Khristich
%T On the inversion of nonlinear constitutive relations for hyperelastic anisotropic materials
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 157-167
%N 85
%U http://geodesic.mathdoc.fr/item/VTGU_2023_85_a11/
%G ru
%F VTGU_2023_85_a11
M. Yu. Sokolova; D. V. Khristich. On the inversion of nonlinear constitutive relations for hyperelastic anisotropic materials. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 157-167. http://geodesic.mathdoc.fr/item/VTGU_2023_85_a11/

[1] A. I. Lure, Nelineinaya teoriya uprugosti, Nauka, Gl. red. fiz. mat. lit., M., 1980, 512 pp.

[2] V. V. Novozhilov, Teoriya uprugosti, Sudpromgiz, L., 1958, 370 pp.

[3] K. F. Chernykh, Vvedenie v anizotropnuyu uprugost, Nauka, M., 1988, 192 pp.

[4] A. A. Markin, M. Yu. Sokolova, Termomekhanika uprugoplasticheskogo deformirovaniya, Fizmatlit, M., 2013, 320 pp.

[5] G. L. Brovko, Opredelyayuschie sootnosheniya mekhaniki sploshnoi sredy: razvitie matematicheskogo apparata i osnov obschei teorii, Nauka, M., 2017, 432 pp.

[6] A. A. Markin, M. Yu. Sokolova, D. V. Khristich, “Postulat A. A. Ilyushina dlya anizotropnykh materialov i variant opredelyayuschikh sootnoshenii”, Izvestiya RAN. Mekhanika tverdogo tela, 2011, no. 1, 38–45 | MR

[7] S. V. Bakushev, “Differentsialnye uravneniya ravnovesiya sploshnoi sredy dlya ploskoi deformatsii v dekartovykh koordinatakh pri bikvadratichnoi approksimatsii zamykayuschikh uravnenii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2022, no. 76, 70–86 | DOI | MR

[8] V. V. Kozlov, A. A. Markin, “Aprobatsiya opredelyayuschikh sootnoshenii nelineinoi teorii uprugosti pri osevom sdvige pologo tsilindra”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 63, 102–114 | DOI

[9] E. V. Lomakin, B. N. Fedulov, “Nonlinear anisotropic elasticity for laminate composites”, Meccanica, 50 (2015), 1527–1535 | DOI | MR | Zbl

[10] A. A. Treschev, A. E. Gvozdev, N. S. Yuschenko, A. A. Kalinin, “Nelineinaya matematicheskaya model svyazi tenzorov vtorogo ranga dlya kompozitnykh materialov”, Chebyshevskii sbornik, 23:3 (2022), 224–237 | DOI | MR

[11] K. Brugger, “Thermodynamic definition of higher order elastic coefficients”, Phys. Rev., 133 (1964), A1611–A1612 | DOI

[12] G. R. Barsch, “Relation between third-order elastic constants of single crystals and polycrystals”, Journal of Applied Physics, 39:8 (1968), 3780–3793 | DOI

[13] S. D. Thomas, “Single-crystal elastic properties of minerals and related materials with cubic symmetry”, American Mineralogist, 103:6 (2018), 977–988 | DOI

[14] M. Yu. Sokolova, D. V. Khristich, “Konechnye deformatsii nelineino uprugikh anizotropnykh materialov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 70, 103–116 | DOI

[15] M. Yu. Sokolova, D. V. Khristich, E. V. Artyukh, “Obraschenie svyazi mezhdu napryazheniyami i deformatsiyami v modeli Murnagana”, Vestnik ChGPU im. I.Ya. Yakovleva. Ser. Mekhanika predelnogo sostoyaniya, 2022, no. 3 (53), 52–62 | DOI

[16] N. I. Ostrosablin, “Ob uravneniyakh lineinoi teorii uprugosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 1992, no. 3, 131–140

[17] Y. Astapov, D. Khristich, A. Markin, M. Sokolova, “The construction of nonlinear elasticity tensors for crystals and quasicrystals”, International Journal of Applied Mechanics, 9:6 (2017), 1750080-1–1750080-15 | DOI

[18] K. M. Knowles, “The plane strain Young's modulus in cubic materials”, Journal of Elasticity, 128:2 (2017), 1–27 | DOI

[19] X. Li, “First-principles study of the third-order elastic constants and related anharmonic properties in refractory high-entropy alloys”, Acta Materialia, 142 (2018), 29–36 | DOI

[20] V. A. Lubarda, “New estimates of the third-order elastic constants for isotropic aggregates of cubic crystals”, J. Mech. Phys. Solids, 45:4 (1997), 471–490 | DOI | Zbl