@article{VTGU_2023_85_a11,
author = {M. Yu. Sokolova and D. V. Khristich},
title = {On the inversion of nonlinear constitutive relations for hyperelastic anisotropic materials},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {157--167},
year = {2023},
number = {85},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_85_a11/}
}
TY - JOUR AU - M. Yu. Sokolova AU - D. V. Khristich TI - On the inversion of nonlinear constitutive relations for hyperelastic anisotropic materials JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 157 EP - 167 IS - 85 UR - http://geodesic.mathdoc.fr/item/VTGU_2023_85_a11/ LA - ru ID - VTGU_2023_85_a11 ER -
%0 Journal Article %A M. Yu. Sokolova %A D. V. Khristich %T On the inversion of nonlinear constitutive relations for hyperelastic anisotropic materials %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 157-167 %N 85 %U http://geodesic.mathdoc.fr/item/VTGU_2023_85_a11/ %G ru %F VTGU_2023_85_a11
M. Yu. Sokolova; D. V. Khristich. On the inversion of nonlinear constitutive relations for hyperelastic anisotropic materials. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 157-167. http://geodesic.mathdoc.fr/item/VTGU_2023_85_a11/
[1] A. I. Lure, Nelineinaya teoriya uprugosti, Nauka, Gl. red. fiz. mat. lit., M., 1980, 512 pp.
[2] V. V. Novozhilov, Teoriya uprugosti, Sudpromgiz, L., 1958, 370 pp.
[3] K. F. Chernykh, Vvedenie v anizotropnuyu uprugost, Nauka, M., 1988, 192 pp.
[4] A. A. Markin, M. Yu. Sokolova, Termomekhanika uprugoplasticheskogo deformirovaniya, Fizmatlit, M., 2013, 320 pp.
[5] G. L. Brovko, Opredelyayuschie sootnosheniya mekhaniki sploshnoi sredy: razvitie matematicheskogo apparata i osnov obschei teorii, Nauka, M., 2017, 432 pp.
[6] A. A. Markin, M. Yu. Sokolova, D. V. Khristich, “Postulat A. A. Ilyushina dlya anizotropnykh materialov i variant opredelyayuschikh sootnoshenii”, Izvestiya RAN. Mekhanika tverdogo tela, 2011, no. 1, 38–45 | MR
[7] S. V. Bakushev, “Differentsialnye uravneniya ravnovesiya sploshnoi sredy dlya ploskoi deformatsii v dekartovykh koordinatakh pri bikvadratichnoi approksimatsii zamykayuschikh uravnenii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2022, no. 76, 70–86 | DOI | MR
[8] V. V. Kozlov, A. A. Markin, “Aprobatsiya opredelyayuschikh sootnoshenii nelineinoi teorii uprugosti pri osevom sdvige pologo tsilindra”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 63, 102–114 | DOI
[9] E. V. Lomakin, B. N. Fedulov, “Nonlinear anisotropic elasticity for laminate composites”, Meccanica, 50 (2015), 1527–1535 | DOI | MR | Zbl
[10] A. A. Treschev, A. E. Gvozdev, N. S. Yuschenko, A. A. Kalinin, “Nelineinaya matematicheskaya model svyazi tenzorov vtorogo ranga dlya kompozitnykh materialov”, Chebyshevskii sbornik, 23:3 (2022), 224–237 | DOI | MR
[11] K. Brugger, “Thermodynamic definition of higher order elastic coefficients”, Phys. Rev., 133 (1964), A1611–A1612 | DOI
[12] G. R. Barsch, “Relation between third-order elastic constants of single crystals and polycrystals”, Journal of Applied Physics, 39:8 (1968), 3780–3793 | DOI
[13] S. D. Thomas, “Single-crystal elastic properties of minerals and related materials with cubic symmetry”, American Mineralogist, 103:6 (2018), 977–988 | DOI
[14] M. Yu. Sokolova, D. V. Khristich, “Konechnye deformatsii nelineino uprugikh anizotropnykh materialov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 70, 103–116 | DOI
[15] M. Yu. Sokolova, D. V. Khristich, E. V. Artyukh, “Obraschenie svyazi mezhdu napryazheniyami i deformatsiyami v modeli Murnagana”, Vestnik ChGPU im. I.Ya. Yakovleva. Ser. Mekhanika predelnogo sostoyaniya, 2022, no. 3 (53), 52–62 | DOI
[16] N. I. Ostrosablin, “Ob uravneniyakh lineinoi teorii uprugosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 1992, no. 3, 131–140
[17] Y. Astapov, D. Khristich, A. Markin, M. Sokolova, “The construction of nonlinear elasticity tensors for crystals and quasicrystals”, International Journal of Applied Mechanics, 9:6 (2017), 1750080-1–1750080-15 | DOI
[18] K. M. Knowles, “The plane strain Young's modulus in cubic materials”, Journal of Elasticity, 128:2 (2017), 1–27 | DOI
[19] X. Li, “First-principles study of the third-order elastic constants and related anharmonic properties in refractory high-entropy alloys”, Acta Materialia, 142 (2018), 29–36 | DOI
[20] V. A. Lubarda, “New estimates of the third-order elastic constants for isotropic aggregates of cubic crystals”, J. Mech. Phys. Solids, 45:4 (1997), 471–490 | DOI | Zbl