Mathematical modeling of the interaction of a single supersonic jet with a moving barrier
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 146-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents the results of research on a single supersonic jet interaction with a moving obstacle. The problem is described mathematically using the Favre-averaged Navier-Stokes equations. OpenFOAM free software is used to implement physical and mathematical modeling and perform numerical calculations. The obstacle moves forward and back perpendicular to the axis of the jet from the nozzle section at a velocity of 1 m/s over a distance of 0.03 m. When the obstacle moves along the flow, it appears in the zone of increasing Mach numbers, and when it moves against the flow, in the zone of decreasing Mach numbers. For all calculation options, the shock-wave structure is found to be non-stationary. It is shown that when the obstacle moves against the jet flow, an auto-oscillatory mode with mass-consuming nature of pulsations occurs. The amplitude of oscillations is 3-5 times higher when using the configuration with the obstacle moving against the jet flow than when using the configuration with the obstacle moving along the jet flow.
Keywords: gas dynamics, mathematical modeling, numerical studies, impact supersonic jet, moving obstacle, OpenFOAM.
@article{VTGU_2023_85_a10,
     author = {A. M. Kagenov and K. V. Kostushin and A. V. Chervakova and I. V. Eremin},
     title = {Mathematical modeling of the interaction of a single supersonic jet with a moving barrier},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {146--156},
     year = {2023},
     number = {85},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_85_a10/}
}
TY  - JOUR
AU  - A. M. Kagenov
AU  - K. V. Kostushin
AU  - A. V. Chervakova
AU  - I. V. Eremin
TI  - Mathematical modeling of the interaction of a single supersonic jet with a moving barrier
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 146
EP  - 156
IS  - 85
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_85_a10/
LA  - ru
ID  - VTGU_2023_85_a10
ER  - 
%0 Journal Article
%A A. M. Kagenov
%A K. V. Kostushin
%A A. V. Chervakova
%A I. V. Eremin
%T Mathematical modeling of the interaction of a single supersonic jet with a moving barrier
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 146-156
%N 85
%U http://geodesic.mathdoc.fr/item/VTGU_2023_85_a10/
%G ru
%F VTGU_2023_85_a10
A. M. Kagenov; K. V. Kostushin; A. V. Chervakova; I. V. Eremin. Mathematical modeling of the interaction of a single supersonic jet with a moving barrier. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 146-156. http://geodesic.mathdoc.fr/item/VTGU_2023_85_a10/

[1] P. J. Lamont, B. L. Hunt, “The impingement of underexpanded axisymmetric jets on wedges”, Journal of Fluid Mechanics, 76 (1976), 307–336 | DOI

[2] M. F. Melnikova, Yu. N. Nesterov, “Vozdeistvie sverkhzvukovoi neraschetnoi strui na ploskuyu pregradu, perpendikulyarnuyu osi strui”, Uchenye zapiski TsAGI, 2:5 (1971), 44–58

[3] F. S. Alvi, J. A. Ladd, W. W. Bower, “Experimental and computational investigation of supersonic impinging jets”, AIAA Journal, 40:4 (2002), 599–609 | DOI

[4] S. P. Kiselev, V. P. Kiselev, V. N. Zaikovskii, “O mekhanizme avtokolebanii pri natekanii sverkhzvukovoi strui na pregradu. 1. Pregrada s igloi”, Prikladnaya mekhanika i tekhnicheskaya fizika, 55:4 (2014), 50–59

[5] S. P. Kiselev, V. P. Kiselev, V. N. Zaikovskii, “O mekhanizme avtokolebanii pri natekanii sverkhzvukovoi strui na pregradu. 2. Pregrada bez igly”, Prikladnaya mekhanika i tekhnicheskaya fizika, 55:5 (2014), 21–28

[6] N. F. Kudimov, A. V. Safronov, O. N. Tretyakova, “Chislennoe modelirovanie vzaimodeistviya mnogoblochnykh sverkhzvukovykh turbulentnykh strui s pregradoi”, Trudy MAI, 2013, no. 70, 1–14

[7] N. F. Kudimov, A. V. Safronov, O. N. Tretyakova, “Rezultaty eksperimentalnykh issledovanii vzaimodeistviya mnogoblochnykh sverkhzvukovykh turbulentnykh strui s pregradoi”, Trudy MAI, 2013, no. 69, 1–11

[8] G. F. Gorshkov, V. N. Uskov, “Osobennosti avtokolebanii, voznikayuschikh pri obtekanii ogranichennoi pregrady sverkhzvukovoi nedorasshirennoi struei”, Prikladnaya mekhanika i tekhnicheskaya fizika, 40:4 (1999), 143–149

[9] A. D. Savelev, “Ispolzovanie sostavnykh kompaktnykh skhem vysokogo poryadka pri reshenii zadachi vzaimodeistviya sverkhzvukovoi strui s poverkhnostyu”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 53:10 (2013), 1746–1759 | DOI | MR | Zbl

[10] V. I. Zapryagaev, N. P. Kiselev, S. G. Kundasev, “Struktura techeniya pri vzaimodeistvii sverkhzvukovoi pererasshirennoi strui s ploskoi naklonnoi pregradoi”, Vestnik PNIPU. Aerokosmicheskaya tekhnika, 2016, no. 45, 32–49 | DOI

[11] D. C. Wilcox, Turbulence modeling for CFD, DCW Industries, La Canada, CA, 1998, 460 pp.

[12] B. van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comp. Phys., 31:1 (1979), 101–136 | DOI

[13] K. V. Kostyushin, “Chislennoe issledovanie nestatsionarnykh gazodinamicheskikh protsessov pri starte tverdotoplivnykh raket”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 67, 127–143 | DOI | MR

[14] MPI Forum, (accessed: 04.04.2021) https://www.mpi-forum.org

[15] A. A. Glazunov, A. M. Kagenov, K. V. Kostyushin, I. V. Eremin, V. A. Kotonogov, K. L. Aligasanova, “Matematicheskoe modelirovanie vzaimodeistviya odinochnoi sverkhzvukovoi strui s pregradami”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 63, 87–101 | DOI