Mots-clés : efficient estimation, super-efficient estimation.
@article{VTGU_2023_85_a1,
author = {N. I. Nikiforov and S. M. Pergamenshchikov and E. A. Pchelintsev},
title = {Super-efficient robust estimation in {L\'evy} continuous time regression models from discrete data},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {22--31},
year = {2023},
number = {85},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_85_a1/}
}
TY - JOUR AU - N. I. Nikiforov AU - S. M. Pergamenshchikov AU - E. A. Pchelintsev TI - Super-efficient robust estimation in Lévy continuous time regression models from discrete data JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 22 EP - 31 IS - 85 UR - http://geodesic.mathdoc.fr/item/VTGU_2023_85_a1/ LA - en ID - VTGU_2023_85_a1 ER -
%0 Journal Article %A N. I. Nikiforov %A S. M. Pergamenshchikov %A E. A. Pchelintsev %T Super-efficient robust estimation in Lévy continuous time regression models from discrete data %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 22-31 %N 85 %U http://geodesic.mathdoc.fr/item/VTGU_2023_85_a1/ %G en %F VTGU_2023_85_a1
N. I. Nikiforov; S. M. Pergamenshchikov; E. A. Pchelintsev. Super-efficient robust estimation in Lévy continuous time regression models from discrete data. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 22-31. http://geodesic.mathdoc.fr/item/VTGU_2023_85_a1/
[1] S. Beltaief, O. V. Chernoyarov, S. M. Pergamenshchikov, “Model selection for the robust efficient signal processing observed with small Levy noise”, Annals of the Institute of Statistical Mathematics, 72 (2020), 1205–1235 | DOI | MR | Zbl
[2] I. A. Ibragimov, R. Z. Khasminskii, Statistical Estimation: Asymptotic Theory, Springer, New York, 1981 | Zbl
[3] Yu. A. Kutoyants, Identification of Dynamical Systems with Small Noise, Kluwer Academic Publishers, Dordrecht, 1994 | Zbl
[4] M. S. Pinsker, “Optimal filtration of square integrable signals in Gaussian white noise”, Problems of Transmission Information, 17 (1981), 120–133
[5] S. A. Kassam, Signal Detection in Non-Gaussian Noise, Springer-Verlag, New York, 1988
[6] V. Konev, S. Pergamenshchikov, E. Pchelintsev, “Estimation of a regression with the impulse type noise from discrete data”, Theory of Probability and its Applications, 58:3 (2014), 442–457 | DOI | MR | Zbl
[7] E. Pchelintsev, “Improved estimation in a non-Gaussian parametric regression”, Statistical Inference for Stochastic Processes, 16:1 (2013), 15–28 | DOI | MR | Zbl
[8] V. V. Konev, S. M. Pergamenshchikov, “Efficient robust nonparametric estimation in a semimartingale regression model”, Annales de l'Institut Henri Poincare (B) Probability and Statistics, 48:4 (2012), 1217–1244 | Zbl
[9] V. V. Konev, S. M. Pergamenshchikov, “Robust model selection for a semimartingale continuous time regression from discrete data”, Stochastic Processes and their Applications, 125 (2015), 294–326 | DOI | MR | Zbl
[10] E. A. Pchelintsev, S. M. Pergamenshchikov, M. A. Povzun, “Efficient estimation methods for non-Gaussian regression models in continuous time”, Annals of the Institute of Statistical Mathematics, 74 (2022), 113–142 | DOI | MR
[11] A. Demmler, C. Reinsch, “Oscillation matrices with spline smoothing”, Numerische Mathematik, 24 (1975), 357–382 | DOI | MR
[12] R. Liptser, A. N. Shiryayev, Theory of Martingales, Kluwer Academic Publishers, Dordrecht, 1989 | Zbl
[13] E. A. Pchelintsev, S. M. Pergamenshchikov, M. A. Leshchinskaya, “Improved estimation method for high dimension semimartingale regression models based on discrete data”, Statistical Inference for Stochastic Processes, 25:3 (2022), 537–576 | DOI | MR