On the generalization of some classes of close-to-convex
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 5-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

he paper introduces the class $C(\lambda,\alpha,\gamma)=\left\{f(z) :\left| (1-\lambda z^2)f'(z)^{1/\gamma}-a\right|\leqslant a\right\}$, $0\leqslant\lambda\leqslant 1$, $0\leqslant\gamma\leqslant 1$, $a>1/2$, almost convex order for functions, generalizing classes of functions with limited rotation $(a\to+\infty, \lambda=0)$ and functions convex of order $\gamma$ in the direction of the imaginary axis $(a\to+\infty, \lambda=1)$. For the class $C(\lambda, a, \gamma)$ and its subclasses, unimprovable distortion theorems and exact convexity radii are found, and similar results are obtained in a class generalizing the class of typically real functions.
Keywords: geometric theory of functions, single-leaf functions, estimates of analytic functions, typically real functions, radii of convexity.
@article{VTGU_2023_85_a0,
     author = {F. F. Maiyer and M. G. Tastanov and A. A. Utemissova and A. T. Baimankulov},
     title = {On the generalization of some classes of close-to-convex},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--21},
     year = {2023},
     number = {85},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_85_a0/}
}
TY  - JOUR
AU  - F. F. Maiyer
AU  - M. G. Tastanov
AU  - A. A. Utemissova
AU  - A. T. Baimankulov
TI  - On the generalization of some classes of close-to-convex
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 5
EP  - 21
IS  - 85
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_85_a0/
LA  - ru
ID  - VTGU_2023_85_a0
ER  - 
%0 Journal Article
%A F. F. Maiyer
%A M. G. Tastanov
%A A. A. Utemissova
%A A. T. Baimankulov
%T On the generalization of some classes of close-to-convex
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 5-21
%N 85
%U http://geodesic.mathdoc.fr/item/VTGU_2023_85_a0/
%G ru
%F VTGU_2023_85_a0
F. F. Maiyer; M. G. Tastanov; A. A. Utemissova; A. T. Baimankulov. On the generalization of some classes of close-to-convex. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 85 (2023), pp. 5-21. http://geodesic.mathdoc.fr/item/VTGU_2023_85_a0/

[1] S. Ozaki, “On the theory of multivalent functions”, Sci. Rep. Tokyo Bunrika Daigaku, Sect. A. Math. Phys. Chem., 2 (1935), 167–188 | Zbl

[2] W. Kaplan, “Close-to-convex schlicht functions”, Michigan Math. J., 1952, no. 1 (2), 169–185 | DOI | Zbl

[3] M. Reade, “The coefficients of close-to-convex functions”, Duke Math. J., 23:3 (1956), 459–462 | DOI | MR | Zbl

[4] A. Renyi, “Some remarks on univalent functions”, Ann. Univ. Mariae Curie-Sklodowska. Sec. A, 3 (1959), 111–121 http://sci-gems.math.bas.bg:8080/jspui/bitstream/10525/2878/1/1959-111-121.pdf

[5] D. Bshouty, A. Lyzzaik, “Univalent functions starlike with respect to a boundary point”, Contemp. Math., 382 (2005), 83–87 | DOI | Zbl

[6] M. S. Robertson, “Analytic functions star-like in one direction”, Amer. J. Math., 58:6 (1936), 465–472 | DOI | MR | Zbl

[7] A. Lecko, “Some subclasses of close-to-convex functions”, Annales Polonici Mathematici, 58:1 (1993), 53–64 https://bibliotekanauki.pl/articles/1311892 | DOI | MR | Zbl

[8] K. Noshiro, “On the theory of schlicht functions”, J. Fac. Sci. Hokkaido Imp. Univ. Ser. I Math., 2:3 (1934), 129–155 | DOI | Zbl

[9] S. E. Warschawski, “On the higher derivatives at the boundary in conformal mapping”, Trans. Am. Math. Soc., 38:2 (1935), 310–340 | DOI | Zbl

[10] W. Hengartner, G. Schober, “Analytic functions close to mappings convex in one direction”, Proc. Amer. Math. Soc., 28:2 (1971), 519–524 https://www.ams.org/journals/proc/1971-028-02/S0002-9939-1971-0277704-9/S0002-9939-1971-0277704-9.pdf | DOI | MR | Zbl

[11] T. MacGregor, “Functions whose derivative has a positive real part”, Trans. Amer. Math. Soc., 104 (1962), 532–537 | DOI | MR | Zbl

[12] F. F. Maier, “Geometricheskie svoistva nekotorykh klassov analiticheskikh v kruge funktsii, vypuklykh v napravlenii mnimoi osi”, Vestnik nauki Kostanaiskogo gosudarstvennogo universiteta im. A. Baitursynova. Ser. estestvenno-tekhnicheskikh nauk, 6:2 (2002), 48–50 https://nauka.kz/page.php?page_id=372&lang=3&page=5931

[13] W. Rogosinski, “Uber Positive Harmonische Entwicklungen und typisch-reelle Potenzreihen”, Math. Zeitschr, 35:1 (1932), 93–121 | DOI | MR | Zbl

[14] G. M. Goluzin, “O tipichno veschestvennykh funktsiyakh”, Matematicheskii sbornik. Novaya ser., 27(69):2 (1950), 201–218 | MR | Zbl

[15] S. A. Gelfer, “Tipichno veschestvennye funktsii”, Matematicheskii sbornik. Novaya ser., 64(106):2 (1964), 171–184 | MR | Zbl

[16] I. P. Mityuk, “Otsenki v nekotorykh klassakh analiticheskikh funktsii”, Metricheskie voprosy teorii funktsii, Naukova dumka, Kiev, 1980, 90–99 | MR

[17] F. F. Maier, M. G. Tastanov, A. A. Utemisova, S. A. Kozlovskii, “Tochnye otsenki i radiusy vypuklosti nekotorykh klassov analiticheskikh funktsii”, Vestnik YuUrGU. Ser. Matematika. Mekhanika. Fizika, 14:1 (2022), 42–49 | DOI | Zbl

[18] R. J. Libera, “Some radius of convexity problems”, Duke Math. J., 31:1 (1964), 143–158 | DOI | MR | Zbl