On the development of a mathematical model of a two-phase flow in an axisymmetric de Laval nozzle
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 93-108
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When modeling the flow of two-phase media, a number of authors use the kinetic approach. In the 1980s, I.M. Vasenin et al. obtained equations describing the flow of gas and liquid particles based on the equation for a drop distribution function in terms of masses, velocities, temperatures, and intrinsic angular momentum. They differ from the known equations by an additional equation for the mean square of the rotation moment. A numerical solution to the equations shows that due to numerous collisions and coagulation, the rotation moments of some drops exceed the critical value, and the drops are destroyed by centrifugal forces. In this paper, the kinetic approach is extended to the model of a two-phase flow in an axisymmetric de Laval nozzle with account for the radial diffusion of drops under the action of the Magnus force acting on a rotating drop. The system of equations is derived from the kinetic equation up to second-order moments using the method of moments. Only second-order moments, which affect diffusion to the wall, are taken into account. Diffusion leads to an earlier occurrence of drops on the wall and therefore must be considered when profiling the contour of the nozzle.
Keywords: kinetic approach, axisymmetric de Laval nozzle, system of two-phase flow equations with allowance for the Magnus force.
Mots-clés : moment of drop rotation
@article{VTGU_2023_84_a7,
     author = {V. P. Bushlanov and V. G. Butov and A. A. Glazunov},
     title = {On the development of a mathematical model of a two-phase flow in an axisymmetric de {Laval} nozzle},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {93--108},
     year = {2023},
     number = {84},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_84_a7/}
}
TY  - JOUR
AU  - V. P. Bushlanov
AU  - V. G. Butov
AU  - A. A. Glazunov
TI  - On the development of a mathematical model of a two-phase flow in an axisymmetric de Laval nozzle
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 93
EP  - 108
IS  - 84
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_84_a7/
LA  - ru
ID  - VTGU_2023_84_a7
ER  - 
%0 Journal Article
%A V. P. Bushlanov
%A V. G. Butov
%A A. A. Glazunov
%T On the development of a mathematical model of a two-phase flow in an axisymmetric de Laval nozzle
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 93-108
%N 84
%U http://geodesic.mathdoc.fr/item/VTGU_2023_84_a7/
%G ru
%F VTGU_2023_84_a7
V. P. Bushlanov; V. G. Butov; A. A. Glazunov. On the development of a mathematical model of a two-phase flow in an axisymmetric de Laval nozzle. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 93-108. http://geodesic.mathdoc.fr/item/VTGU_2023_84_a7/

[1] I. M. Vasenin, V. A. Arkhipov, V. G. Butov, A. A. Glazunov, V. F. Trofimov, Gazovaya dinamika dvukhfaznykh techenii v soplakh, Izd-vo Tom. un-ta, Tomsk, 1986, 262 pp.

[2] A. V. Aliev i dr, Vnutrennyaya ballistika RDTT/RARAN, eds. A.M. Lipanov, Yu. M. Milekhin i dr, Mashinostroenie, M., 2007, 504 pp.

[3] A. N. Kraiko, R. I. Nigmatulin, V. K. Starkov, L. E. Sternin, “Mekhanika mnogofaznykh sred”, Itogi nauki i tekhniki. Gidromekhanika, 6, Izd-vo VINITI, M., 1972, 93–174

[4] L. E. Sternin, Osnovy gazodinamiki dvukhfaznykh techenii v soplakh, Mashinostroenie, M., 1974, 212 pp.

[5] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987, 464 pp.; т. 2, 360 с.

[6] A. N. Kraiko, Shraiber A. A. K postroeniyu modeli, “opisyvayuschei v odnomernom priblizhenii dvukhfaznoe techenie s koagulyatsiei chastits polidispersnogo kondensata”, ZhPMTF, 1974, no. 2, 67–74

[7] L. E. Sternin, B. N. Maslov, A. A. Shraiber, A. M. Podvysotskii, Dvukhfaznye mono- i polidispersnye techeniya gaza s chastitsami, Mashinostroenie, M., 1980, 172 pp.

[8] N. N. Yanenko, R. I. Soloukhin, A. N. Papyrin, V. M. Fomin, Sverkhzvukovye dvukhfaznye techeniya v usloviyakh skorostnoi neravnovesnosti chastits, Nauka, Novosibirsk, 1980, 160 pp.

[9] A. A. Shraiber, “Mnogofaznye polidispersnye techeniya s peremennym fraktsionnym sostavom dispersnykh vklyuchenii”, Itogi nauki i tekhniki. Kompleksnye i spetsialnye razdely mekhaniki, 3, Izd-vo VINITI, M., 1988, 3–80

[10] A. D. Rychkov, Matematicheskoe modelirovanie gazodinamicheskikh protsessov v kanalakh i soplakh, Nauka, Novosibirsk, 1986, 222 pp.

[11] A. A. Shishkov, S. D. Panin, V. V. Rumyantsev, Rabochie protsessy v raketnykh dvigatelyakh tverdogo topliva, Mashinostroenie, M., 1989, 239 pp.

[12] A. M. Lipanov, V. P. Bobryshev, A. V. Aliev, F. F. Spiridonov, V. D. Lisitsa, Chislennyi eksperiment v teorii RDTT, ed. A.M. Lipanov, Nauka, Ekaterinburg, 1994, 304 pp.

[13] A. A. Glazunov, I. M. Vasenin, V. A. Ivanov, N. E. Kuvshinov, R. K. Narimanov, “Two-Phase Flow in the Nozzles of Solid Rocket Motors”, Journal of Propulsion and Power, 11:4 (1995), 583–592 | DOI

[14] A. A. Glazunov, T. V. Vasenina, I. V. Eremin, N. E. Kuvshinov, “Issledovanie neravnovesnykh prostranstvennykh dvukhfaznykh techenii v ellipticheskikh soplakh s uchetom koagulyatsii, drobleniya i vrascheniya chastits i polidispersnoi modeli oskolkov”, Izvestiya vuzov. Fizika, 2004, no. 10, 31–36

[15] L. E. Sternin, A. A. Shraiber, Mnogofaznye techeniya gaza s chastitsami, Mashinostroenie, M., 1994, 320 pp.

[16] V. G. Butov, I. M. Vasenin, N. N. Dyachenko, “Model dvizheniya polidispersnogo kondensata s uchetom sluchainykh pulsatsii skorosti i temperatury koaguliruyuschikhsya chastits”, Izvestiya AN SSSR. Mekhanika zhidkosti i gaza, 1981, no. 3, 33–39 | MR | Zbl

[17] A. M. Gubertov, V. V. Mironov, D. M. Borisov i dr, Gazodinamicheskie i teplofizicheskie protsessy v raketnykh dvigatelyakh tverdogo topliva, eds. A.S. Koroteev i dr, Mashinostroenie, M., 2004, 512 pp.

[18] V. A. Arkhipov, V. P. Bushlanov, I. M. Vasenin i dr, “Ravnovesnye formy i ustoichivost vraschayuschikhsya kapel”, Izvestiya AN SSSR. Mekhanika zhidkosti i gaza, 1982, no. 4, 13–20

[19] K. N. Volkov, V. N. Emelyanov, Techenie gaza s chastitsami, Fizmatlit, M., 2008, 600 pp.

[20] V. A. Naumov, A. D. Solomenko, V. P. Yatsenko, “Vliyanie sily Magnusa na dvizhenie sfericheskogo tverdogo tela pri bolshoi uglovoi skorosti”, Inzhenerno-fizicheskii zhurnal, 65:3 (1993), 287–290

[21] Dzh. Girshfelder, Ch. Kerpis, R. Berd, Molekulyarnaya teoriya gazov i zhidkostei, Izd-vo inostr. lit., M., 1961, 932 pp.