Mots-clés : viscous liquid, surfactant
@article{VTGU_2023_84_a6,
author = {E. I. Borzenko and A. S. Usanina and G. R. Shrager},
title = {Effect of surfactant on bubble rising velocity in viscous liquid},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {81--92},
year = {2023},
number = {84},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_84_a6/}
}
TY - JOUR AU - E. I. Borzenko AU - A. S. Usanina AU - G. R. Shrager TI - Effect of surfactant on bubble rising velocity in viscous liquid JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 81 EP - 92 IS - 84 UR - http://geodesic.mathdoc.fr/item/VTGU_2023_84_a6/ LA - ru ID - VTGU_2023_84_a6 ER -
%0 Journal Article %A E. I. Borzenko %A A. S. Usanina %A G. R. Shrager %T Effect of surfactant on bubble rising velocity in viscous liquid %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 81-92 %N 84 %U http://geodesic.mathdoc.fr/item/VTGU_2023_84_a6/ %G ru %F VTGU_2023_84_a6
E. I. Borzenko; A. S. Usanina; G. R. Shrager. Effect of surfactant on bubble rising velocity in viscous liquid. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 81-92. http://geodesic.mathdoc.fr/item/VTGU_2023_84_a6/
[1] V. G. Levich, Fiziko-khimicheskaya gidrodinamika, Fizmatlit, M., 1959, 700 pp.
[2] M. Pang, M. Jia, Y. Fei, “Experimental study on effect of surfactant and solution property on bubble rising motion”, J. Mol. Liq., 375 (2023), 121390 | DOI
[3] P. Fayzi, D. Bastani, M. Lotfi, “A note on the synergistic effect of surfactants and nanoparticles on rising bubble hydrodynamics”, Chem. Engineering Processing: Process Intensification, 155 (2020), 108068 | DOI
[4] Y. Luo et al, “Experimental Study of the Effect of the Surfactant on the Single Bubble Rising in Stagnant Surfactant Solutions and a Mathematical Model for the Bubble Motion”, Ind. Eng. Chem. Res., 61:26 (2022), 9514–9527 | DOI
[5] V. A. Arkhipov, I. M. Vasenin, A. S. Usanina, “Dinamika vsplytiya puzyrka v prisutstvii poverkhnostno-aktivnykh veschestv”, Izvestiya Rossiiskoi akademii nauk. Mekhanika zhidkosti i gaza, 2016, no. 2, 142–151 | DOI | Zbl
[6] S. Fleckenstein, D. Bothe, “Simplified modeling of the influence of surfactants on the rise of bubbles in VOF-simulations”, Chem. Eng. Sci, 102 (2013), 514–523 | DOI
[7] C. Pesci et al, “Computational analysis of single rising bubbles influenced by soluble surfactant”, J. Fluid Mech, 856 (2018), 709–763 | DOI | MR | Zbl
[8] Y. Matsumoto, T. Uda, S. Takagi, “The Effect of Surfactant on Rising Bubbles”, IUTAM Symposium on Computational Approaches to Multiphase Flow, Springer Netherlands, Dordrecht, 2004, 311–321 | DOI
[9] Z. He, C. Maldarelli, Z. Dagan, “The size of stagnant caps of bulk soluble surfactant on the interfaces of translating fluid droplets”, J. Colloid Interface Sci, 146:2 (1991), 442–451 | DOI
[10] K. Kentheswaran et al, “Direct numerical simulation of gas-liquid mass transfer around a spherical contaminated bubble in the stagnant-cap regime”, Int. J. Heat Mass Transf., 198 (2022), 123325 | DOI
[11] H. Manikantan, T. M. Squires, “Surfactant dynamics: hidden variables controlling fluid flows”, J. Fluid Mech, 892 (2020), 1–115 | DOI | MR
[12] V. A. Yakutenok, E. I. Borzenko, “Chislennoe modelirovanie techenii vyazkoi neszhimaemoi zhidkosti so svobodnoi poverkhnostyu na osnove metoda SIMPLE”, Matematicheskoe modelirovanie, 19:3 (2007), 52–58 | Zbl
[13] S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Pub. Corp, 1980, 197 pp. | Zbl
[14] I. M. Vasenin, O. B. Sidonskii, G. R. Shrager, “Chislennoe reshenie zadachi o dvizhenii vyazkoi zhidkosti so svobodnoi poverkhnostyu”, Doklady AN SSSR, 217:2 (1974), 295–298
[15] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980, 352 pp.
[16] S. S. Askar, A. A. Karawia, “On Solving Pentadiagonal Linear Systems via Transformations”, Math. Probl. Eng., 2015 (2015), 232456, 1–9 | DOI
[17] D. Bhaga, M. E. Weber, “Bubbles in viscous liquids: shapes, wakes and velocities”, J. Fluid Mech, 105:1 (1981), 61–85 | DOI