Effect of surfactant on bubble rising velocity in viscous liquid
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 81-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents a study of the rising velocity of a single gas bubble in a viscous liquid with a dissolved surfactant and the characteristics of hydrodynamic and diffusion processes on the free surface under conditions of dominance of viscous friction forces over gravitational forces. The original computational method accounting for the surface tension forces and the Marangoni effect caused by the surfactant concentration gradient along the boundary is presented. The mathematical formulation of the problem includes the equations of motion, continuity, and convective diffusion. The boundary conditions on the free surface are written with account for the discontinuity of shear and normal stresses. The surfactant transport on the surface is described in accordance with the Langmuir model. The free surface motion is carried out in compliance with the kinematic condition. The approach is based on the simultaneous use of the finite volume method and the method of invariants, which allows one to explicitly identify a free surface with valid natural boundary conditions. The effect of concentration of surfactants on the characteristics of hydrodynamic and diffusion processes is demonstrated.
Keywords: gas bubble, rising velocity, numerical simulation, parametric studies.
Mots-clés : viscous liquid, surfactant
@article{VTGU_2023_84_a6,
     author = {E. I. Borzenko and A. S. Usanina and G. R. Shrager},
     title = {Effect of surfactant on bubble rising velocity in viscous liquid},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {81--92},
     year = {2023},
     number = {84},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_84_a6/}
}
TY  - JOUR
AU  - E. I. Borzenko
AU  - A. S. Usanina
AU  - G. R. Shrager
TI  - Effect of surfactant on bubble rising velocity in viscous liquid
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 81
EP  - 92
IS  - 84
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_84_a6/
LA  - ru
ID  - VTGU_2023_84_a6
ER  - 
%0 Journal Article
%A E. I. Borzenko
%A A. S. Usanina
%A G. R. Shrager
%T Effect of surfactant on bubble rising velocity in viscous liquid
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 81-92
%N 84
%U http://geodesic.mathdoc.fr/item/VTGU_2023_84_a6/
%G ru
%F VTGU_2023_84_a6
E. I. Borzenko; A. S. Usanina; G. R. Shrager. Effect of surfactant on bubble rising velocity in viscous liquid. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 81-92. http://geodesic.mathdoc.fr/item/VTGU_2023_84_a6/

[1] V. G. Levich, Fiziko-khimicheskaya gidrodinamika, Fizmatlit, M., 1959, 700 pp.

[2] M. Pang, M. Jia, Y. Fei, “Experimental study on effect of surfactant and solution property on bubble rising motion”, J. Mol. Liq., 375 (2023), 121390 | DOI

[3] P. Fayzi, D. Bastani, M. Lotfi, “A note on the synergistic effect of surfactants and nanoparticles on rising bubble hydrodynamics”, Chem. Engineering Processing: Process Intensification, 155 (2020), 108068 | DOI

[4] Y. Luo et al, “Experimental Study of the Effect of the Surfactant on the Single Bubble Rising in Stagnant Surfactant Solutions and a Mathematical Model for the Bubble Motion”, Ind. Eng. Chem. Res., 61:26 (2022), 9514–9527 | DOI

[5] V. A. Arkhipov, I. M. Vasenin, A. S. Usanina, “Dinamika vsplytiya puzyrka v prisutstvii poverkhnostno-aktivnykh veschestv”, Izvestiya Rossiiskoi akademii nauk. Mekhanika zhidkosti i gaza, 2016, no. 2, 142–151 | DOI | Zbl

[6] S. Fleckenstein, D. Bothe, “Simplified modeling of the influence of surfactants on the rise of bubbles in VOF-simulations”, Chem. Eng. Sci, 102 (2013), 514–523 | DOI

[7] C. Pesci et al, “Computational analysis of single rising bubbles influenced by soluble surfactant”, J. Fluid Mech, 856 (2018), 709–763 | DOI | MR | Zbl

[8] Y. Matsumoto, T. Uda, S. Takagi, “The Effect of Surfactant on Rising Bubbles”, IUTAM Symposium on Computational Approaches to Multiphase Flow, Springer Netherlands, Dordrecht, 2004, 311–321 | DOI

[9] Z. He, C. Maldarelli, Z. Dagan, “The size of stagnant caps of bulk soluble surfactant on the interfaces of translating fluid droplets”, J. Colloid Interface Sci, 146:2 (1991), 442–451 | DOI

[10] K. Kentheswaran et al, “Direct numerical simulation of gas-liquid mass transfer around a spherical contaminated bubble in the stagnant-cap regime”, Int. J. Heat Mass Transf., 198 (2022), 123325 | DOI

[11] H. Manikantan, T. M. Squires, “Surfactant dynamics: hidden variables controlling fluid flows”, J. Fluid Mech, 892 (2020), 1–115 | DOI | MR

[12] V. A. Yakutenok, E. I. Borzenko, “Chislennoe modelirovanie techenii vyazkoi neszhimaemoi zhidkosti so svobodnoi poverkhnostyu na osnove metoda SIMPLE”, Matematicheskoe modelirovanie, 19:3 (2007), 52–58 | Zbl

[13] S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Pub. Corp, 1980, 197 pp. | Zbl

[14] I. M. Vasenin, O. B. Sidonskii, G. R. Shrager, “Chislennoe reshenie zadachi o dvizhenii vyazkoi zhidkosti so svobodnoi poverkhnostyu”, Doklady AN SSSR, 217:2 (1974), 295–298

[15] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980, 352 pp.

[16] S. S. Askar, A. A. Karawia, “On Solving Pentadiagonal Linear Systems via Transformations”, Math. Probl. Eng., 2015 (2015), 232456, 1–9 | DOI

[17] D. Bhaga, M. E. Weber, “Bubbles in viscous liquids: shapes, wakes and velocities”, J. Fluid Mech, 105:1 (1981), 61–85 | DOI