On the trajectories of bodies in non-inertial reference frames
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 68-80
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper considers a trajectory of the body moving under the influence of the force $\mathbf{F}$ in a non-inertial reference frame (NRF), which is "tied" to a given curve $y=y(x)$ and is described by a natural movable basis $\tau$-$\mathbf{n}$. For this NRF, a system of linear differential equations is obtained to simulate various types of trajectories resulting from the action of certain forces. The common Cartesian coordinate system is chosen as a fixed basis $\mathbf{i}$-$\mathbf{j}$. Several examples of motion along the given trajectories $y=y(x)$ are considered with gravity as an acting force $\mathbf{F}$. For these specific cases, the analytic expressions for absolute (in the system $\mathbf{i}$-$\mathbf{j}$), relative (in the system $\tau$-$\mathbf{n}$), and translational accelerations are given. The corresponding trajectories of motion under free fall conditions in terms of NRF are constructed. The following trajectories $y=y(x)$ are studied: uneven motion along a straight line, a brachistochrone, and a circle. Using computer modeling tools, the results are presented as plots showing the qualitative difference between the trajectories of the same body in the inertial and non-inertial frames of reference. The considered limiting cases of motion confirm the validity of the obtained general system of equations in the NRF.
Keywords:
movable basis, absolute and relative motion, non-inertial reference frame.
@article{VTGU_2023_84_a5,
author = {S. B. Bogdanova and S. O. Gladkov},
title = {On the trajectories of bodies in non-inertial reference frames},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {68--80},
publisher = {mathdoc},
number = {84},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_84_a5/}
}
TY - JOUR AU - S. B. Bogdanova AU - S. O. Gladkov TI - On the trajectories of bodies in non-inertial reference frames JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 68 EP - 80 IS - 84 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2023_84_a5/ LA - ru ID - VTGU_2023_84_a5 ER -
%0 Journal Article %A S. B. Bogdanova %A S. O. Gladkov %T On the trajectories of bodies in non-inertial reference frames %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 68-80 %N 84 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2023_84_a5/ %G ru %F VTGU_2023_84_a5
S. B. Bogdanova; S. O. Gladkov. On the trajectories of bodies in non-inertial reference frames. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 68-80. http://geodesic.mathdoc.fr/item/VTGU_2023_84_a5/