On the trajectories of bodies in non-inertial reference frames
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 68-80

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers a trajectory of the body moving under the influence of the force $\mathbf{F}$ in a non-inertial reference frame (NRF), which is "tied" to a given curve $y=y(x)$ and is described by a natural movable basis $\tau$-$\mathbf{n}$. For this NRF, a system of linear differential equations is obtained to simulate various types of trajectories resulting from the action of certain forces. The common Cartesian coordinate system is chosen as a fixed basis $\mathbf{i}$-$\mathbf{j}$. Several examples of motion along the given trajectories $y=y(x)$ are considered with gravity as an acting force $\mathbf{F}$. For these specific cases, the analytic expressions for absolute (in the system $\mathbf{i}$-$\mathbf{j}$), relative (in the system $\tau$-$\mathbf{n}$), and translational accelerations are given. The corresponding trajectories of motion under free fall conditions in terms of NRF are constructed. The following trajectories $y=y(x)$ are studied: uneven motion along a straight line, a brachistochrone, and a circle. Using computer modeling tools, the results are presented as plots showing the qualitative difference between the trajectories of the same body in the inertial and non-inertial frames of reference. The considered limiting cases of motion confirm the validity of the obtained general system of equations in the NRF.
Keywords: movable basis, absolute and relative motion, non-inertial reference frame.
@article{VTGU_2023_84_a5,
     author = {S. B. Bogdanova and S. O. Gladkov},
     title = {On the trajectories of bodies in non-inertial reference frames},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {68--80},
     publisher = {mathdoc},
     number = {84},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_84_a5/}
}
TY  - JOUR
AU  - S. B. Bogdanova
AU  - S. O. Gladkov
TI  - On the trajectories of bodies in non-inertial reference frames
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 68
EP  - 80
IS  - 84
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_84_a5/
LA  - ru
ID  - VTGU_2023_84_a5
ER  - 
%0 Journal Article
%A S. B. Bogdanova
%A S. O. Gladkov
%T On the trajectories of bodies in non-inertial reference frames
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 68-80
%N 84
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2023_84_a5/
%G ru
%F VTGU_2023_84_a5
S. B. Bogdanova; S. O. Gladkov. On the trajectories of bodies in non-inertial reference frames. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 68-80. http://geodesic.mathdoc.fr/item/VTGU_2023_84_a5/