Mathematical modeling of disposal of the payload fairing of a launch vehicle after completion
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 52-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The payload launching into Earth orbit is carried out by launch vehicles. At certain stages of the flight, once the dense layers of the atmosphere are passed through, the spent stages of rocket engines and large payload fairings are jettisoned. Falling of separated parts in the designated areas causes economic, environmental, and social problems. This paper presents a mathematical model of the combustion of a pyrotechnic device with a charge-filler from a solid propellant. The model is developed to calculate combustion processes, the flow of the products of combustion and heat and mass exchange in elements of the pyrotechnic device. Calculations are carried out for three configurations of the solid propellant charge-filler. The obtained spatial and temporal distributions of the parameters of occurring flows allow one to assess the feasibility of the pyrotechnic device, namely defragmentation and combustion of the payload fairing elements. The calculated results for the model pyrotechnic device are in satisfactory agreement with experimental data.
Keywords: launch vehicle payload fairing, pyrotechnic device, solid propellant, combustion products, mathematical modeling.
Mots-clés : charge-filler, combustion
@article{VTGU_2023_84_a4,
     author = {V. A. Arkhipov and S. S. Bondarchuk and I. S. Bondarchuk and N. N. Zolotorev and E. A. Kozlov and M. P. Orlova},
     title = {Mathematical modeling of disposal of the payload fairing of a launch vehicle after completion},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {52--67},
     year = {2023},
     number = {84},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_84_a4/}
}
TY  - JOUR
AU  - V. A. Arkhipov
AU  - S. S. Bondarchuk
AU  - I. S. Bondarchuk
AU  - N. N. Zolotorev
AU  - E. A. Kozlov
AU  - M. P. Orlova
TI  - Mathematical modeling of disposal of the payload fairing of a launch vehicle after completion
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 52
EP  - 67
IS  - 84
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_84_a4/
LA  - ru
ID  - VTGU_2023_84_a4
ER  - 
%0 Journal Article
%A V. A. Arkhipov
%A S. S. Bondarchuk
%A I. S. Bondarchuk
%A N. N. Zolotorev
%A E. A. Kozlov
%A M. P. Orlova
%T Mathematical modeling of disposal of the payload fairing of a launch vehicle after completion
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 52-67
%N 84
%U http://geodesic.mathdoc.fr/item/VTGU_2023_84_a4/
%G ru
%F VTGU_2023_84_a4
V. A. Arkhipov; S. S. Bondarchuk; I. S. Bondarchuk; N. N. Zolotorev; E. A. Kozlov; M. P. Orlova. Mathematical modeling of disposal of the payload fairing of a launch vehicle after completion. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 52-67. http://geodesic.mathdoc.fr/item/VTGU_2023_84_a4/

[1] Sredstva vyvedeniya, Nauchno-proizvodstvennoe ob'edinenie im. S.A. Lavochkina, https://www.laspace.ru/ru/activities/products/sredstva-vyvedeniya/

[2] G. P. Gardymov, E. V. Meshkov, A. V. Pchelintsev, G. P. Lashmanov, Yu. A. Afanasev, Kompozitsionnye materialy v raketno-kosmicheskom apparatostroenii, SpetsLit, SPb., 1999, 271 pp.

[3] D. B. Lempert, V. I. Trushlyakov, V. E. Zarko, “Otsenka massy pirotekhnicheskoi smesi dlya szhiganiya golovnogo obtekatelya kosmicheskoi rakety”, Fizika goreniya i vzryva, 51:5 (2015), 121–125

[4] V. I. Trushlyakov, K. I. Zharikov, D. B. Lempert, L. S. Yanovskii, “Issledovanie polimernykh materialov dlya szhiganiya sbrasyvaemykh chastei letatelnykh apparatov”, Zhurnal prikladnoi khimii, 94:1 (2021), 98–102

[5] V. I. Trushlyakov, A. V. Panichkin, “Methodology for the design of combustible structures of separating launch vehicle parts”, Journal of Spacecraft and Rockets, 58:4 (2021), 1200–1206 | DOI

[6] Yu. V. Iordan, “Eksperimentalnye issledovaniya termodinamicheskikh protsessov goreniya szhigaemykh demonstratorov”, Dinamika sistem, mekhanizmov i mashin, 9:2 (2021), 97–103

[7] V. A. Arkhipov, A. A. Glazunov, N. N. Zolotorev, E. A. Kozlov, A. G. Korotkikh, V. T. Kuznetsov, V. I. Trushlyakov, “Analiz vozmozhnosti szhiganiya elementov golovnogo obtekatelya rakety-nositelya”, Fizika goreniya i vzryva, 59:5 (2023) (to appear)

[8] Z. Li, N. Wang, B. Shi, S. Li, R. Yang, “Effects of particle size on two-phase flow loss in aluminized solid rocket motors”, Acta Astronautica, 159 (2019), 33–40 | DOI

[9] I. S. Zhukov, S. S. Bondarchuk, A. S. Zhukov, B. V. Borisov, “Verification of model of calculation of intra-chamber parameters in hybrid solid-propellant rocket engines”, MATEC Web of Conferences, 72 (2016), 01135, 1–4

[10] A. M. Gubertov, V. V. Mironov, D. M. Borisov i dr., Gazodinamicheskie i teplofizicheskie protsessy v raketnykh dvigatelyakh tverdogo topliva, eds. A.S. Koroteev i dr., Mashinostroenie, M., 2004, 512 pp.

[11] S. S. Bondarchuk, “Mathematical simulation of a large size rocket motors”, Tomsk State Pedagogical University Bulletin, 2002, no. 2 (30), 23–32

[12] B. V. Borisov, “Features applications of the approaches when constructing efficient algorithms during the modelling of some intracanal flows”, EPJ Web of Conferences, 110 (2016), 01012, 1–4 | DOI

[13] V. A. Arkhipov, N. N. Zolotorev, S. S. Bondarchuk, A. S. Zhukov, “Analiz rabochikh protsessov v gibridnom raketnom dvigatele”, Materialy VI Vserossiiskoi nauchno-tekhnicheskoi konferentsii «Fundamentalnye osnovy ballisticheskogo proektirovaniya» (Sankt-Peterburg, 2018), Balt. gos. tekhn. un-t, SPb., 2018, 70–73

[14] A. A. Shishkov, S. D. Panin, B. V. Rumyantsev, Rabochie protsessy v raketnykh dvigatelyakh tverdogo topliva, spravochnik, Mashinostroenie, M., 1988, 240 pp.

[15] H. Kraussold, “Heat transfer to liquids in tubes in the case of turbulent flow”, Forschung, 39:1 (1933)

[16] N. M. Belyaev, A. A. Ryadno, Metody nestatsionarnoi teploprovodnosti, ucheb. posobie dlya vuzov, Vyssh. shkola, M., 1978, 328 pp.

[17] T. R. Goodman, “Integral Methods for nonlinear heat transfer”, Advances in Heat Transfer, v. 1, eds. T. Irvine, J. Hartnett, Academic Press, New-York, 1964, 51–122 | DOI

[18] S. S. Bondarchuk, A. S. Zhukov, Programma rascheta parametrov funktsionirovaniya abliruyuschei teplozaschity, Programma dlya EVM # 2017610017, 2017 | Zbl

[19] P. Rouch, Vychislitelnaya gidrodinamika, Mir, M., 1980, 616 pp.

[20] F. W. Rizzy, M. Inoue, “Time-split finite-volume method for three-dimensional blunt-body flows”, AIAA Journal, 11:11 (1973), 1478–1485 | DOI

[21] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, eds. S.K. Godunov i dr., Nauka, M., 1976, 400 pp.

[22] G. B. Alalykin, S. K. Godunov, I. L. Kireev, L. A. Pliner, Reshenie odnomernykh zadach gazovoi dinamiki v podvizhnykh setkakh, Nauka, M., 1978, 112 pp.