Analysis of the possibility of technogenic fracture blocking using a suspension system
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 36-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of technogenic fracture blocking by a suspension mixture is relevant for preventing the producing wells from additional water inflow. The aim of this work is to evaluate the effect of fracture colmatation with polymer-dispersed compositions using a mathematical model of suspension transporting through a fracture. The suspension particles are assumed to be larger than the pore channels and do not penetrate into the reservoir. The problem is solved using a system of equations of continuum mechanics. The leading edge of the suspension slug represents contact discontinuity. It is determined that when the discontinuity approaches the end of the fracture, a reflected wave of the volume fraction of particles is formed, which moves toward the flow and blocks the fracture. At the same time, due to the need to maintain the same flow rate and fracture size reduction, there is a sharp increase in the downhole pressure preventing the fracture from complete blockage. Thus, the maximum blocked fracture size is determined. The obtained results are compared with field data.
Keywords: technogenic fracture, law of conservation of mass, contact discontinuity, reflected wave.
Mots-clés : suspension, volume content of particles, Poiseuille law
@article{VTGU_2023_84_a3,
     author = {D. A. Anur'ev and K. M. Fedorov and A. Ya. Gil'manov and A. P. Shevelev and N. A. Morozovskiy and K. V. Toropov},
     title = {Analysis of the possibility of technogenic fracture blocking using a suspension system},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {36--51},
     year = {2023},
     number = {84},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_84_a3/}
}
TY  - JOUR
AU  - D. A. Anur'ev
AU  - K. M. Fedorov
AU  - A. Ya. Gil'manov
AU  - A. P. Shevelev
AU  - N. A. Morozovskiy
AU  - K. V. Toropov
TI  - Analysis of the possibility of technogenic fracture blocking using a suspension system
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 36
EP  - 51
IS  - 84
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_84_a3/
LA  - ru
ID  - VTGU_2023_84_a3
ER  - 
%0 Journal Article
%A D. A. Anur'ev
%A K. M. Fedorov
%A A. Ya. Gil'manov
%A A. P. Shevelev
%A N. A. Morozovskiy
%A K. V. Toropov
%T Analysis of the possibility of technogenic fracture blocking using a suspension system
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 36-51
%N 84
%U http://geodesic.mathdoc.fr/item/VTGU_2023_84_a3/
%G ru
%F VTGU_2023_84_a3
D. A. Anur'ev; K. M. Fedorov; A. Ya. Gil'manov; A. P. Shevelev; N. A. Morozovskiy; K. V. Toropov. Analysis of the possibility of technogenic fracture blocking using a suspension system. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 36-51. http://geodesic.mathdoc.fr/item/VTGU_2023_84_a3/

[1] V. V. Maltsev, R. N. Asmandiyarov, V. A. Baikov, T. S. Usmanov, A. Ya. Davletbaev, “Issledovanie razvitiya treschin avtoGRP na opytnom uchastke Priobskogo mestorozhdeniya s lineinoi sistemoi razrabotki”, Neftyanoe khozyaistvo, 2012, no. 5, 70–73

[2] A. A. Gimazov, I. S. Bazyrov, “The development method of low-permeability and ultra-lowpermeability reservoirs by waterflooding”, SPE Russian Petroleum Technology Conference (Moscow, Russia, 12-15 October 2021), 2021, Paper SPE-206416-MS | DOI

[3] A. A. Izotov, D. G. Afonin, “O vzaimosvyazi faktorov, vliyayuschikh na effektivnost razrabotki nizkopronitsaemykh kollektorov s primeneniem zavodneniya”, Neftyanoe khozyaistvo, 2020, no. 12, 106–109 | DOI

[4] C. Cheng, H. Milsch, “Hydromechanical investigations on the self-propping potential of fractures in tight sandstones”, Rock Mech. Rock Eng., 54:6 (2021), 5407–5432 | DOI

[5] P. Singh, R. G. Agarwal, “Two-step rate test: new procedure for determining formation parting pressure”, J. Pet. Technol, 42:1 (1990), 84–90 | DOI

[6] A. A. Ridel, A. S. Margarit, R. A. Garifullina, V. A. Mazhar, M. A. Almukhametov, I. A. Petrov, “Povyshenie effektivnosti razrabotki neftegazovykh mestorozhdenii posredstvom optimizatsii ekspluatatsii skvazhin nagnetatelnogo fonda”, Rossiiskaya tekhnicheskaya neftegazovaya konferentsiya i vystavka SPE po razvedke i dobyche \date Moskva, Rossiya, 16-18 oktyabrya 2012, 2012, Paper SPE-162057-RU, 1–7 | DOI

[7] D. V. Balin, I. G. Alekhin, V. I. Brovko, A. G. Naimushin, “Ispolzovanie 3D geomekhanicheskogo modelirovaniya dlya povysheniya dostovernosti GDM v terrigennom kollektore, oslozhnennom bolshim kolichestvom tektonicheskikh narushenii”, Rossiiskaya neftegazovaya tekhnicheskaya konferentsiya SPE (Moskva, Rossiya, 26-29 oktyabrya 2020), 2020, Paper SPE-201977-RU, 1–20 | DOI

[8] W. Yan, W. Demin, S. Zhi, S. Changlan, W. Gang, L. Desheng, “Hydraulic fracturing of polymer injection wells”, SPE Asia Pacific Oil and Gas Conference and Exhibition (Perth, Australia, 18-20 October 2004), 2004, Paper SPE 88592, 1–4 | DOI

[9] V. A. Baikov, I. M. Burakov, I. D. Latypov, A. A. Yakovlev, R. N. Asmandiyarov, “Kontrol razvitiya tekhnogennykh treschin avtoGRP pri podderzhanii plastovogo davleniya na mestorozhdeniyakh OOO «RN-Yuganskneftegaz»>”, Neftyanoe khozyaistvo, 2012, no. 11, 30–33

[10] G. R. Holzhausen, H. N. Egan, “Detection and control of hydraulic fractures in water injection wells”, SPE California Regional Meeting, Ventura, California, USA, 8-10 April 1987, 1987, Paper SPE 16362, 1–8 | DOI

[11] V. A. Baikov, A. Ya. Davletbaev, T. S. Usmanov, Z. Yu. Stepanova, R. N. Asmandiyarov, “Spetsialnye gidrodinamicheskie issledovaniya dlya monitoringa za razvitiem treschin GRP v nagnetatelnykh skvazhinakh”, Neftegazovoe delo, 2011, no. 1, 65–77

[12] A. Ya. Davletbaev, V. A. Baikov, G. R. Bikbulatova, R. N. Asmandiyarov, E. R. Nazargalin, A. A. Slabetskii, A. V. Sergeichev, R. I. Nuriev, “Promyslovye issledovaniya po izucheniyu samoproizvolnogo razvitiya tekhnogennykh treschin v nagnetatelnykh skvazhinakh”, Rossiiskaya tekhnicheskaya neftegazovaya konferentsiya i vystavka SPE po razvedke i dobyche (Moskva, Rossiya, 14-16 oktyabrya 2014), Paper SPE-171232-RU, 2014, 1–9 | DOI

[13] A. R. Davletova, G. R. Bikbulatova, A. I. Fedorov, A. Ya. Davletbaev, “Geomekhanicheskoe modelirovanie napravleniya i traektorii razvitiya treschin gidrorazryva plasta pri razrabotke nizkopronitsaemykh kollektorov”, Nauchno-tekhnicheskii vestnik NK «Rosneft», 2014, no. 1 (34), 40–43

[14] I. L. Khabibullin, A. A. Khisamov, “Modelirovanie nestatsionarnoi filtratsii v sisteme plast treschina gidrorazryva”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2022, no. 77, 158–168 | DOI

[15] N. Yu. Petukhov, M. M. Kulushev, A. G. Emelyanov, A. A. Mironenko, “Opyt realizatsii programmy ogranicheniya zakachki rabochego agenta na Priobskom mestorozhdenii”, Neftyanoe khozyaistvo, 2020, no. 10, 54–58 | DOI

[16] A. I. Islamov, R. R. Faskhutdinov, D. Yu. Kolupaev, S. A. Vereschagin, “O mekhanizmakh vozniknoveniya zon s anomalno vysokim plastovym davleniem i metodakh ikh prognozirovaniya v nerazrabatyvaemykh plastakh na primere Priobskogo mestorozhdeniya”, Neftyanoe khozyaistvo, 2018, no. 10, 54–59 | DOI

[17] N. Feng, Y. Chang, Z. Wang, T. Liang, X. Guo, Y. Zhu, L. Hu, Y. Wan, “Comprehensive evaluation of waterflooding performance with induced fractures in tight reservoir: a field case”, Geofluids, 2021 (2021), 1–11 | DOI

[18] A. R. Davletova, A. I. Fedorov, G. A. Schutskii, “Analiz riska samoproizvolnogo rosta treschiny gidrorazryva plasta v vertikalnom napravlenii”, Neftyanoe khozyaistvo, 2019, no. 6, 50–53 | DOI

[19] E. V. Shel, P. K. Kabanova, D. R. Tkachenko, I. Sh. Bazyrov, A. V. Logvinyuk, “Modelirovanie initsiatsii i rasprostraneniya treschiny gidrorazryva plasta na nagnetatelnoi skvazhine dlya netreschinovatykh terrigennykh porod na primere Priobskogo mestorozhdeniya”, PRONEFT. Professionalno o nefti, 2020, no. 2 (16), 36–42 | DOI | MR

[20] R. S. Seright, “Use of preformed gels for conformance control in fractured systems”, SPE Prod. Fac, 20:1 (1997), 59–65 | DOI

[21] D. Uolkott, Razrabotka i upravlenie mestorozhdeniyami pri zavodnenii. Metody proektirovaniya, osuschestvleniya i monitoringa, pozvolyayuschie optimizirovat tempy dobychi i osvoeniya zapasov, YuKOS, M., 2001, 144 pp.

[22] A. Sh. Gazizov, R. Kh. Nizamov, “Otsenka effektivnosti tekhnologii primeneniya polimerdispersnoi sistemy po rezultatam promyslovykh issledovanii”, Neftyanoe khozyaistvo, 1990, no. 7, 49–52

[23] K. M. Fedorov, A. P. Shevelev, A. V. Kobyashev, V. A. Zakharenko, A. V. Kochetov, R. S. Neklesa, A. V. Usoltsev, “Opredelenie filtratsionnykh parametrov suspenzii po eksperimentalnym dannym”, Moskva, Rossiya, 26-29 oktyabrya 2020, 2020, Paper SPE-202018-RU, 1–16 | DOI | Zbl

[24] M. Ekonomides, Unifitsirovannyi dizain gidrorazryva plasta, PetroAlyans Servisis Kompani Limited, M., 2004, 316 pp.

[25] E. V. Dontsov, A. P. Peirce, “Slurry flow, gravitational settling and a proppant transport model for hydraulic fractures”, J. Fluid Mech, 760 (2014), 567–590 | DOI | MR

[26] A. V. Tatosov, A. S. Shlyapkin, “Dvizhenie proppanta v raskryvayuscheisya treschine gidrorazryva plasta”, Izvestiya Saratovskogo universiteta. Novaya seriya. Ser. Matematika. Mekhanika. Informatika, 18:2 (2018), 217–226 | DOI | MR

[27] A. S. Shlyapkin, A. V. Tatosov, “O reshenii zadachi gidrorazryva plasta v odnomernoi matematicheskoi postanovke”, Neftyanoe khozyaistvo, 2020, no. 12, 118–121 | DOI

[28] A. Ya. Gilmanov, K. M. Fedorov, A. P. Shevelev, “Zadacha o blokirovanii tekhnogennoi treschiny v plaste suspenzionnoi smesyu”, Izvestiya RAN. Mekhanika zhidkosti i gaza, 2022, no. 6, 27–35 | DOI