Kähler and sublagrangian submanifolds
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 23-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work describes a way to obtain Kähler and sublagrangian submanifolds in real manifolds of arbitrary dimension. For this purpose, the concept of subtwistor and sub-Kähler structure is used. They generalize the classic concepts of twistor and Kähler structures to real manifolds of any dimension with a degenerate fundamental 2-form. The explicit examples of such submanifolds are presented. It is also shown how the subtwistor structure on the manifold allows one to factorize locally this manifold into direct products of submanifolds.
Keywords: subtwistor structure, Kähler submanifold, sublagrangian submanifold, degenerate 2-form.
Mots-clés : sub-Kähler structure
@article{VTGU_2023_84_a2,
     author = {E. S. Kornev},
     title = {K\"ahler and sublagrangian submanifolds},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {23--35},
     year = {2023},
     number = {84},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_84_a2/}
}
TY  - JOUR
AU  - E. S. Kornev
TI  - Kähler and sublagrangian submanifolds
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 23
EP  - 35
IS  - 84
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_84_a2/
LA  - ru
ID  - VTGU_2023_84_a2
ER  - 
%0 Journal Article
%A E. S. Kornev
%T Kähler and sublagrangian submanifolds
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 23-35
%N 84
%U http://geodesic.mathdoc.fr/item/VTGU_2023_84_a2/
%G ru
%F VTGU_2023_84_a2
E. S. Kornev. Kähler and sublagrangian submanifolds. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 23-35. http://geodesic.mathdoc.fr/item/VTGU_2023_84_a2/

[1] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston, 2010, 260 pp. | Zbl

[2] E. S. Kornev, “Subkompleksnye i subkelerovy struktury”, Sibirskii matematicheskii zhurnal, 57:5 (2016), 1062–1077 | MR | Zbl

[3] E. S. Kornev, “Invariantnye affinornye metricheskie struktury na gruppakh Li”, Sibirskii matematicheskii zhurnal, 53:1 (2012), 107–123 | MR | Zbl

[4] E. S. Kornev, “Affinornye struktury na vektornykh rassloeniyakh”, Sibirskii matematicheskii zhurnal, 55:6 (2014), 1283–1296 | MR | Zbl

[5] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, v. v 2 t., Nauka, M., 1981

[6] A. V. Bolsinov, A. Y. Konyaev, V. S. Matveev, “Nijenhuis Geometry”, Advances In Mathematics, 394 (2022), 108001–108131 | DOI

[7] Dzh. Milnor, Dzh. Stashef, Kharakteristicheskie klassy, Mir, M., 1979, 371 pp.

[8] E. S. Kornev, “Subtvistornye struktury i subtvistornoe rassloenie”, Sibirskii matematicheskii zhurnal, 60:6 (2019), 1310–1323 | MR | Zbl

[9] W. Boothby, H. Wang, “On contact manifolds”, Annals of Math., 68 (1958), 721–734 | DOI | MR | Zbl

[10] A. T. Fomenko, Simplekticheskaya geometriya : metody i prilozheniya, Izd-vo Mosk. un-ta, M., 1988, 413 pp.