A mathematical model of physically nonlinear torsional vibrations of a circular elastic rod
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 152-166
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model of non-stationary torsional vibrations of a circular elastic rod is developed taking into account the Kauderer nonlinear law of elasticity. To solve this problem, the nonlinear equation of motion of an elastic body with torsional vibrations of a rod is reduced to two linear Bessel equations (homogeneous and inhomogeneous) in transformations. Considering general solutions of the obtained equations with zero initial and given boundary conditions on the surface of the rod, a refined physically nonlinear equation of torsional vibrations of the rod made of homogeneous and isotropic material is derived. In particular, this equation may be used to obtain some well-known classical oscillation equations. An algorithm is proposed that allows one to determine the stress-strain state of the points along an arbitrary cross-section of the rod in terms of space and time coordinates using the field of the desired functions. Some special cases resulting from the obtained results are analyzed. In particular, by reducing the expressions of Bessel functions in the form of power series to the first few terms, an approximate equation of the circular rod oscillations is derived. Comparative analysis of findings and available data of other authors shows that the obtained equation generalizes the well-known classical linear equation and nonlinear equations of G. Kauderer and Professor I.G. Filippov. Based on the proposed equation and formulas for stresses and displacement, the applied problem of physically nonlinear torsional vibrations of a circular elastic rod under end and surface loads is solved.
Keywords: mathematical model, non-stationary, nonlinear equations, physical nonlinearity, stresses, displacement.
Mots-clés : torsional vibrations
@article{VTGU_2023_84_a11,
     author = {Kh. Khudoynazarov},
     title = {A mathematical model of physically nonlinear torsional vibrations of a circular elastic rod},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {152--166},
     year = {2023},
     number = {84},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_84_a11/}
}
TY  - JOUR
AU  - Kh. Khudoynazarov
TI  - A mathematical model of physically nonlinear torsional vibrations of a circular elastic rod
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 152
EP  - 166
IS  - 84
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_84_a11/
LA  - ru
ID  - VTGU_2023_84_a11
ER  - 
%0 Journal Article
%A Kh. Khudoynazarov
%T A mathematical model of physically nonlinear torsional vibrations of a circular elastic rod
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 152-166
%N 84
%U http://geodesic.mathdoc.fr/item/VTGU_2023_84_a11/
%G ru
%F VTGU_2023_84_a11
Kh. Khudoynazarov. A mathematical model of physically nonlinear torsional vibrations of a circular elastic rod. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 152-166. http://geodesic.mathdoc.fr/item/VTGU_2023_84_a11/

[1] B. A. Khudayarov, K. M. Komilova, “Chislennoe modelirovanie kolebanii vyazkouprugikh truboprovodov, transportiruyuschikh dvukhfaznuyu sredu v rezhime probkovogo techeniya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 61, 95–110 | DOI | MR

[2] Kh. Kh. Khudoinazarov, R. I. Khalmuradov, B. F. Yalgashev, “Prodolno-radialnye kolebaniya uprugoi tsilindricheskoi obolochki s vyazkoi szhimaemoi zhidkostyu”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 69, 139–154 | DOI | MR

[3] Kh. Khudoynazarov, J. Abdurazakov, D. Kholikov, “Nonlinear torsional vibrations of a circular cylindrical elastic shell”, AIP Conference Proceedings, 2637, 2022, 020003 | DOI

[4] J. Awrejcewicz, V. A. Krysko, “Nonlinear coupled problems in dynamics of shells”, International Journal of Engineering Science, 41 (2003), 587–607 | DOI | MR | Zbl

[5] K. Khudoynazarov, B. Yalgashev, “Longitudinal vibrations of a cylindrical shell filled with a viscous compressible liquid”, E3S Web of Conferences, 264 (2021), 02017 | DOI

[6] M. Amabili, Nonlinear vibrations and stability of shells and plates, Cambridge University Press, New York, 2008, 374 pp. | Zbl

[7] I. A. Tsurpal, Raschet elementov konstruktsii iz nelineino-uprugikh materialov, Tekhnika, Kiev, 1976, 176 pp.

[8] V. V. Petrov, “Raschet neodnorodnykh po tolschine obolochek s uchetom fizicheskoi i geometricheskoi nelineinostei”, Academia. Arkhitektura i stroitelstvo, 2016, no. 1, 112–117

[9] Kh. Khudoynazarov, D. Kholikov, J. Abdurazakov, AIP Conference Proceedings, 2637, 2022, Torsional vibrations of a conical elastic shell | DOI

[10] R. Khalmuradov, U. Nishonov, “Nonlinear deformation of circular discrete ribbed plate under influence of pulse loading”, E3S Web of Conferences, 264 (2021), 02018 | DOI

[11] G. Kauderer, Nelineinaya mekhanika, per. s nem., Izd-vo inostr. lit., M., 1961, 777 pp.

[12] F. Pellicano, “Vibrations of circular cylindrical shells: theory and experiments”, Journal of Sound and Vibration, 303 (2007), 154–170 | DOI

[13] D. A. Khodzhaev, R. A. Abdikarimov, M. M. Mirsaidov, “Dynamics of a physically nonlinear viscoelastic cylindrical shell with a concentrated mass”, Magazine of Civil Engineering, 91:7 (2019), 39–48 | DOI

[14] S. V. Bakushev, “Razreshayuschie differentsialnye uravneniya fizicheski-nelineinoi teorii uprugosti v napryazheniyakh dlya ploskoi deformatsii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 63, 72–86 | DOI | MR

[15] V. I. Erofeev, V. V. Kazhaev, N. P. Semerikova, “Krutilnye volny konechnoi amplitudy v uprugom sterzhne”, Izvestiya RAN. Mekhanika tverdogo tela, 2007, no. 6, 157–163

[16] A. V. Kudin, Yu. N. Tamurov, “Primenenie metoda malogo parametra pri modelirovanii izgiba simmetrichnykh trekhsloinykh plastin s nelineino-uprugim zapolnitelem”, Visnik Skhidnoukraïnskogo natsionalnogo universitetu im. Volodimira Dalya, 2011, no. 11 (165), 32–40

[17] E. S. Vyachkin, V. O. Kaledin, E. V. Reshetnikova, E. A. Vyachkina, A. E. Gileva, “Razrabotka matematicheskoi modeli staticheskogo deformirovaniya sloistykh konstruktsii s neszhimaemymi sloyami”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 55, 72–83 | DOI | MR | Zbl

[18] S. V. Bakushev, “Differentsialnye uravneniya ravnovesiya sploshnoi sredy dlya ploskoi deformatsii v dekartovykh koordinatakh pri bikvadratichnoi approksimatsii zamykayuschikh uravnenii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2022, no. 76, 70–86 | DOI | MR

[19] Kh. Kh. Khudoynazarov, “Transversal vibrations of thick and thin cylindrical shells, interacting with deformable medium”, Shell structures. Theory and applications, SSTA 2005, Proc. of the 8th international conference on shell structures (Jurata, Gdansk, Poland, 12-14 October 2005), Taylor Francis Group, London, 2006, 343–347

[20] I. G. Filippov, K. Kudajnazarov, “Boundary value problems of longitudinal oscillations of the circular cylindrical shells”, Gongye Jianzhu. Industrial Construction, 28:12 (1998), 34–40

[21] I. G. Filippov, S. I. Filippov, Kolebatelnye i volnovye protsessy v sploshnykh szhimaemykh sredakh, Proizv. izdat. kombinat VINITI, M., 2007, 429 pp.

[22] G. I. Petrashen, “Problemy inzhenernoi teorii kolebanii vyrozhdennykh sistem”, Issledovaniya po uprugosti i plastichnosti, 5, Izd-vo LGU, L., 1966, 3–33

[23] Kh. Khudoynazarov, A. Gadayev, Kh. Akhatov, “Torsional vibrations of a rotating viscoelastic rod”, E3S Web of Conferences, 365 (2023), 02016 | DOI

[24] I. G. Filippov, O. A. Egorychev, Volnovye protsessy v lineinykh vyazkouprugikh sredakh, Mashinostroenie, M., 1983, 270 pp.