Sequences of binomial coefficients modulo prime
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 14-22

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of infinite sequences of binomial coefficients $\begin{pmatrix} x\\ y\end{pmatrix}\mod p$, $x=0,1,2,\dots$( $p$ is a prime number) is considered. In the search of regularities, preliminary mathematical experiments are carried out using Wolfram Mathematica. The periodicity of these sequences is proved and the length of the period is determined as $p$ to the power of l$\lfloor \log_p(y)\rfloor+1$.
Keywords: experimental mathematics, periods, Mathematica system.
Mots-clés : sequences of binomial coefficients, congruences
@article{VTGU_2023_84_a1,
     author = {V. M. Zyuz'kov},
     title = {Sequences of binomial coefficients modulo prime},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {14--22},
     publisher = {mathdoc},
     number = {84},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_84_a1/}
}
TY  - JOUR
AU  - V. M. Zyuz'kov
TI  - Sequences of binomial coefficients modulo prime
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 14
EP  - 22
IS  - 84
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_84_a1/
LA  - ru
ID  - VTGU_2023_84_a1
ER  - 
%0 Journal Article
%A V. M. Zyuz'kov
%T Sequences of binomial coefficients modulo prime
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 14-22
%N 84
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2023_84_a1/
%G ru
%F VTGU_2023_84_a1
V. M. Zyuz'kov. Sequences of binomial coefficients modulo prime. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 14-22. http://geodesic.mathdoc.fr/item/VTGU_2023_84_a1/