Tensor product of incidence algebras and group algebras
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 5-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $I(X, R)$ and $I(Y, S)$ be incidence algebras, where $X$ and $Y$ are preordered sets, $R$ and $S$ are algebras over some commutative ring $T$. We prove the existence of a homomorphism of algebras $I(X, R)\otimes_T I(Y, S)\to I(X\times Y, R\otimes_T S)$. If $X$ and $Y$ are finite sets, then there is an isomorphism. For arbitrary groups $G$ and $H$, it is proved that the isomorphism of algebras $R[G]\otimes_T S[H]\cong (R\otimes_T S)[G\times H]$ is valid.
Keywords: tensor product, incidence algebras, group algebra.
@article{VTGU_2023_84_a0,
     author = {I. V. Dudin and P. A. Krylov},
     title = {Tensor product of incidence algebras and group algebras},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--13},
     year = {2023},
     number = {84},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_84_a0/}
}
TY  - JOUR
AU  - I. V. Dudin
AU  - P. A. Krylov
TI  - Tensor product of incidence algebras and group algebras
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 5
EP  - 13
IS  - 84
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_84_a0/
LA  - ru
ID  - VTGU_2023_84_a0
ER  - 
%0 Journal Article
%A I. V. Dudin
%A P. A. Krylov
%T Tensor product of incidence algebras and group algebras
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 5-13
%N 84
%U http://geodesic.mathdoc.fr/item/VTGU_2023_84_a0/
%G ru
%F VTGU_2023_84_a0
I. V. Dudin; P. A. Krylov. Tensor product of incidence algebras and group algebras. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 5-13. http://geodesic.mathdoc.fr/item/VTGU_2023_84_a0/

[1] D. S. Passman, The Algebraic Structure of Group Rings, John Wiley and Sons, New York, 1977, 734 pp. | Zbl

[2] E. Spiegel, C. J. O'Donnell, Incidence Algebras, Marcel Dekker, New York, 1997, 334 pp. | Zbl

[3] R. S. Pierce, Associative Algebras, Springer-Verlag, Berlin, 1982, 406 pp. | Zbl

[4] S. Dascalescu, Wyk L. van, Do isomorphic structural matrix rings have isomorphic graphs?, Proc. Amer. Math. Soc., 124:5 (1996), 1385–1391 | DOI | MR | Zbl

[5] K. C. Smith, Wyk L. van, “An internal characterization of structural matrix rings”, Commun. Algebra, 22:4 (1994), 5599–5622 | DOI | Zbl

[6] P. Krylov, A. Tuganbaev, Formal Matrices, Springer-Verlag, Berlin, 2017, 164 pp. | Zbl