A representative volume element and effective thermoelastic material parameters of compositions with periodic structure
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 111-126
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, an iterative algorithm for designing representative volume element (RVE) of a composite with periodic structure and its effective material thermoelastic characteristics is proposed. The features of the RVE are described. A periodic cell of the composite, which is widely and validly used to determine its effective parameters under specific boundary conditions on its surfaces, does not have all the necessary features of the RVE. Therefore, a separated from the composite sequence of cubic samples with increasing characteristic size and consisting of periodic cells is considered. According to the method of contradiction, each sample of the sequence is assumed to be an RVE. A solution to the problem of micromechanics is obtained for them. Based on this solution, the macroscopic properties of the sample are determined. The calculated macroscopic material parameters and the fulfillment of the symmetry conditions of the stiffness matrix for the next cubic sample are compared with the corresponding data for the previous sample, and the essential features of the RVE are verified. Finally, a conclusion is made about the possibility (or impossibility) of recognizing the considered sample as an RVE. The sequences of the values of calculated characteristics and the percentage deviation of the stiffness matrix from symmetry are convergent. The obtained characteristics are taken as the limiting values for the cube representing RVE. They are referred to as effective material characteristics of the composition. It is revealed that the existence of the RVE for a composite is a basis for applying effective modulus theory to the description of its stress-strain state.
Mots-clés : composite
Keywords: representative volume element, effective material characteristics, periodicity cell.
@article{VTGU_2023_83_a9,
     author = {L. V. Landik and V. M. Pestrenin and I. V. Pestrenina},
     title = {A representative volume element and effective thermoelastic material parameters of compositions with periodic structure},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {111--126},
     year = {2023},
     number = {83},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_83_a9/}
}
TY  - JOUR
AU  - L. V. Landik
AU  - V. M. Pestrenin
AU  - I. V. Pestrenina
TI  - A representative volume element and effective thermoelastic material parameters of compositions with periodic structure
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 111
EP  - 126
IS  - 83
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_83_a9/
LA  - ru
ID  - VTGU_2023_83_a9
ER  - 
%0 Journal Article
%A L. V. Landik
%A V. M. Pestrenin
%A I. V. Pestrenina
%T A representative volume element and effective thermoelastic material parameters of compositions with periodic structure
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 111-126
%N 83
%U http://geodesic.mathdoc.fr/item/VTGU_2023_83_a9/
%G ru
%F VTGU_2023_83_a9
L. V. Landik; V. M. Pestrenin; I. V. Pestrenina. A representative volume element and effective thermoelastic material parameters of compositions with periodic structure. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 111-126. http://geodesic.mathdoc.fr/item/VTGU_2023_83_a9/

[1] B. E. Pobedrya, Mekhanika kompozitsionnykh materialov, Izd-vo MGU, M., 1984, 335 pp.

[2] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984, 356 pp.

[3] Yu. I. Dimitrienko, A. P. Sokolov, “Razrabotka avtomatizirovannoi tekhnologii vychisleniya effektivnykh uprugikh kharakteristik kompozitov metodom asimptoticheskogo osredneniya”, Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser. Estestvennye nauki, 2008, no. 2 (29), 56–67

[4] Yu. I. Dimitrienko, A. P. Sokolov, “Mnogomasshtabnoe modelirovanie uprugikh kompozitsionnykh materialov”, Matematicheskoe modelirovanie, 24:5 (2012), 3–20 | MR | Zbl

[5] Yu. I. Dimitrienko, E. A. Gubareva, S. V. Sborschikov, “Asimptoticheskaya teoriya konstruktivno-ortotropnykh plastin s dvukhperiodicheskoi strukturoi”, Matematicheskoe modelirovanie i chislennye metody, 2014, no. 1, 36–56

[6] Yu. I. Dimitrienko, E. A. Gubareva, S. V. Sborschikov, “Chislennoe modelirovanie teplovogo rasshireniya kompozitsionnykh materialov na osnove metoda asimptoticheskogo osredneniya”, Inzhenernyi zhurnal: nauka i innovatsii, 2015, no. 12 (48), 1–16

[7] R. Avellaneda, S. Rodriguez-Aleman, J. A. Otero, “Semi-Analytical Method for Computing Effective Thermoelastic Properties in Fiber-Reinforced Composite Materials”, Appl. Sci. Materials Science and Engineering, 11:12 (2021), 5354 | DOI

[8] Qiang Ma, Jun Zhi Cui, “Second-Order Two-Scale Analysis Method for the Quasi-Periodic Structure of Composite Materials under Condition of Coupled Thermo-Elasticity”, Advanced Materials Research, 629 (2012), 160–164 | DOI

[9] Yu. I. Dimitrienko, E. A. Gubareva, S. V. Sborschikov, “Konechno-elementnoe modelirovanie effektivnykh vyazkouprugikh svoistv odnonapravlennykh kompozitsionnykh materialov”, Matematicheskoe modelirovanie i chislennye metody, 2014, no. 2 (2), 28–48

[10] Yu. I. Dimitrienko, Yu. V. Yurin, S. V. Sborschikov, A. D. Yakhnovskii, R. R. Baimurzin, “Modelirovanie effektivnykh yader relaksatsii i polzuchesti vyazkouprugikh kompozitov metodom asimptoticheskogo osredneniya”, Matematicheskoe modelirovanie i chislennye metody, 2020, no. 3 (27), 22–46

[11] Yu. I. Dimitrienko, E. A. Gubareva, S. V. Sborschikov, N. N. Fedonyuk, “Modelirovanie vyazkouprugikh kharakteristik sloisto-voloknistykh polimernykh kompozitsionnykh materialov”, Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana, 2014, no. 11, 748–770

[12] Yu. I. Dimitrienko, A. I. Kashkarov, A. A. Makashov, “Konechno-elementnyi raschet effektivnykh uprugoplasticheskikh kharakteristik kompozitov na osnove metoda asimptoticheskogo osredneniya”, Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser. Estestvennye nauki, 2007, no. 1 (24), 26–46

[13] A. N. Vlasov, D. B. Volkov-Bogorodskii, “Parametricheskoe usrednenie uravnenii nelineinoi teorii uprugosti i deformatsionnoi teorii plastichnosti”, Mekhanika kompozitsionnykh materialov i konstruktsii slozhnykh i geterogennykh sred, sb. trudov 6-i Vseros. nauch. konf. s mezhdunar. uchastiem im. I.F. Obraztsova i Yu.G. Yanovskogo (16-18 noyabrya 2016 g.), IPRIM RAN, M., 2016, 77–84

[14] Yu. I. Dimitrienko, “Modelirovanie nelineino-uprugikh kharakteristik kompozitov s konechnymi deformatsiyami metodom asimptoticheskogo osredneniya”, Izvestiya vuzov. Mashinostroenie, 2015, no. 11 (668), 68–77 | DOI

[15] Anoshkin A.N, P. V. Pisarev, D. A. Ermakov et al, “Forecasting effective elastic properties of spatially reinforced composite materials applying the local approximation method”, AIP Conference Proceedings, 2216, 2020, 020008 | DOI

[16] E. V. Kuimova, N. A. Trufanov, “Chislennoe prognozirovanie termovyazkouprugikh kharakteristik odnonapravlennogo voloknistogo kompozita s vyazkouprugimi komponentami”, Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchnaya seriya, 2009, no. 4 (70), 129–148

[17] A. P. Yankovskii, “A heuristic approach to the determination of the effective thermal conductivity coefficients of biperiodic composite media”, J. of Engineering Physics and Thermophysics, 89:6 (2016), 1574–1581 | DOI

[18] A. V. Bezmelnitsyn, S. B. Sapozhnikov, “Mnogomasshtabnoe modelirovanie i analiz mekhanizma vozniknoveniya tekhnologicheskikh mezhsloinykh napryazhenii v tolstostennykh koltsakh iz stekloplastika”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2017, no. 2, 5–22 | DOI

[19] Z. Chen, F. Yang, S. A. Meguid, “Multi-level modeling of woven glass/epoxy composite for multilayer printed circuit board applications”, International Journal of Solids and Structures, 51:21–22 (2014), 3679–3688 | DOI

[20] B. McWilliams, J. Dibelka, C. F. Yen, “Multi scale modeling and characterization of in elastic deformation mechanisms in continuous fiber and 2D woven fabric reinforced metal matrix composites”, Materials Science Engineering A, 618 (2014), 142–152 | DOI

[21] A. Hallal, R. Younes, F. Fardoun, “Review and comparative study of analytical modeling for the elastic properties of textile composites”, Composites Part B: Engineering, 50 (2013), 22–31 | DOI

[22] E. Kormanikova, K. Kotrasova, “Micro-macro modelling of laminated composite rectangular reservoir”, Composite Structures, 279 (2022), 114701 | DOI

[23] V. M. Pestrenin, I. V. Pestrenina, L. V. Landik, “Characteristics of Compositions of Unidirectional Short Boron Fibers and Metal Matrices”, Mech Compos Mater, 55 (2020), 1–14 | DOI

[24] S. V. Sheshenin, N. B. Artamonova, F. B. Kiselev, D. M. Semenov, L. S. Volkov, Fu. Ming-Hui, “Asymptotic Homogenization of Materials with Artificial Periodic Structures”, AIP Conference Proceedings, 2216, no. 1, 2020, 070005-1–070005-8 | DOI

[25] S. Heide-Jorgensen, M. K. Budzik, C. H. C. H. Ibsen, “Three-dimensionalThree-dimensional, multiscale homogenization for hybrid woven composites with fiber-matrix debonding”, Composites Science and Technology, 218:8 (2022), 109204 | DOI

[26] M. Schneider, M. Josien, F. Otto, “Representative volume elements for matrix-inclusion composites a computational study on the effects of an improper treatment of particles intersecting the boundary and the benefits of periodizing the ensemble”, Journal of the Mechanics and Physics of Solids, 158 (2022), 104652 | DOI

[27] N. Song, M. Jackson, Sh. Wu, F. Souza, “Micromechanical Analysis of Mechanical Response for Unidirectional Fiber-Reinforced Plies”, 5th International Congress on 3D materials science, Thematic section, Integrating Materials and Manufacturing Innovation, 10, 2021, 542–550 | DOI

[28] A. Elmasry, W. Azoti, M. Elmarakbi, A. Elmarakbi, “Interaction modelling of the thermomechanical behaviour of spatially-oriented graphene platelets (GPLs) reinforced polymer matrix”, International Journal of Solids and Structures, 232, December (2021), 111183 | DOI

[29] Q. Chen, F. Zhao, J. Jia, Ch. Zhu, Sh. Bai, Y. Ye, “Multiscale simulation of elastic response and residual stress for ceramic particle reinforced composites”, Ceramics International, 48:2 (2022), 2431–2440 | DOI

[30] R. Hill, “Elastic properties of reinforced solids: Some theoretical principles”, J. Mech. Phys. Solids, 11:5 (1963), 357–372 | DOI | MR | Zbl

[31] T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, “Determination of the size of the representative volume element for random composites: statistical and numerical approach”, Int. J. Solids Struct., 40:13–14 (2003), 3647–3679 | DOI | Zbl

[32] W. J. Drugan, J. R. Willis, “A micromechanics-based nonlocal constitutive equations and estimates of representative volume element size for elastic composites”, J. Mech. Phys. Solids, 44 (1996), 497–524 | DOI | MR | Zbl