Effect of phase changes on parameters of turbulent
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 86-101
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model of a gas-drop non-isothermal polydisperse turbulent jet is developed with account for phase changes (the evaporation of drops and the condensation of vapor on them). The model is used in calculations of a two-phase jet outflowing into a gaseous medium with the temperature significantly exceeding the temperatures of phases in the initial section of the jet. It is shown that the occurrence of phase changes leads to a quantitative change in the dependences of phase velocities and volume concentrations of drops along the jet axis, while the type of the dependences remains constant. When phase changes are neglected in calculations of temperatures of phases, not only quantitative but also qualitative errors may arise. The obtained results show that under certain conditions some areas may appear near the jet axis where, along with evaporation of small drops, the vapor condensation occurs on larger drops, and these areas extend with the gas temperature rise in the environment. The behavior of the intensity of phase changes along the jet axis is identical for drops of all sizes. Namely, near the initial section of the jet, the intensity of phase changes of low value decreases to the minimum, then it increases significantly, and when the maximum is attained, it starts to decrease tending to zero (while the drops evaporate completely). The research results show that phase changes must be considered when calculating gas-drop non-isothermal jets to avoid quantitative and qualitative errors.
Keywords: two-phase jet, fluid vapor, drops, evaporation, mathematical modeling, calculation results.
Mots-clés : condensation
@article{VTGU_2023_83_a7,
     author = {Yu. V. Zuev},
     title = {Effect of phase changes on parameters of turbulent},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {86--101},
     year = {2023},
     number = {83},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_83_a7/}
}
TY  - JOUR
AU  - Yu. V. Zuev
TI  - Effect of phase changes on parameters of turbulent
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 86
EP  - 101
IS  - 83
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_83_a7/
LA  - ru
ID  - VTGU_2023_83_a7
ER  - 
%0 Journal Article
%A Yu. V. Zuev
%T Effect of phase changes on parameters of turbulent
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 86-101
%N 83
%U http://geodesic.mathdoc.fr/item/VTGU_2023_83_a7/
%G ru
%F VTGU_2023_83_a7
Yu. V. Zuev. Effect of phase changes on parameters of turbulent. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 86-101. http://geodesic.mathdoc.fr/item/VTGU_2023_83_a7/

[1] A. J. Yule, C. Ah. Seng, P. G. Felton, A. Ungut, N. A. Chigier, “A Study of Vaporizing Fuel Sprays by Laser Techniques”, Combustion and Flame, 44 (1982), 71–84 | DOI

[2] K. N. Volkov, V. N. Emelyanov, Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii, Fizmatlit, M., 2008, 368 pp.

[3] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v 2 ch., v. 1, Nauka, M., 1987, 464 pp.

[4] I. O. Khintse, Turbulentnost, ee mekhanizm i teoriya, Fizmatgiz, M., 1963, 680 pp.

[5] A. A. Mostafa, S. E. Elghobashi, “A two-equation turbulence model for jet flows laden with vaporizing droplets”, International Journal of Multiphase Flow, 11:4 (1985), 515–533 | DOI

[6] A. A. Mostafa, H. C. Mongia, “On the modeling of turbulent evaporating sprays: Eulerian versus Lagrangian approach”, International Journal of Heat and Mass Transfer, 30:12 (1987), 2583–2593 | DOI

[7] M. A. Pakhomov, V. I. Terekhov, “Chislennoe issledovanie turbulentnoi struktury polidispersnoi dvukhfaznoi strui s isparyayuschimisya kaplyami”, Matematicheskoe modelirovanie, 28:11 (2016), 64–78 | MR

[8] S. De, K. N. Lakshmisha, “Simulations of Evaporating Spray Jet in a Uniform Co-Flowing Turbulent Air Stream”, International Journal of Spray and Combustion Dynamics, 1:2 (2009), 169–198 | DOI

[9] J. Wang, F. Dalla Barba, F. Picano, “Direct numerical simulation of an evaporating turbulent diluted jet-spray at moderate reynolds number”, International Journal of Multiphase Flow, 137 (2021), 103567 | DOI

[10] Yu. V. Zuev, “Pogreshnost rascheta parametrov dvukhfaznoi turbulentnoi strui pri ispolzovanii odnozhidkostnoi matematicheskoi modeli”, Uchenye zapiski Kazanskogo universiteta. Ser. Fiziko-matematicheskie nauki, 162, no. 4, 2020, 411–425 | DOI

[11] L. E. Sternin, A. A. Shraiber, Mnogofaznye techeniya gaza s chastitsami, Mashinostroenie, M., 1994, 320 pp.

[12] V. A. Arkhipov, S. A. Basalaev, K. G. Perfileva, S. N. Polenchuk, A. S. Usanina, “Metody opredeleniya koeffitsienta soprotivleniya pri vduve gaza s poverkhnosti sfericheskoi chastitsy”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2022, no. 76, 56–69 | DOI

[13] N. A. Fuchs, Evaporation and droplet growth in gaseous media, Pergamon Press, London, 1959, 80 pp.

[14] Yu. V. Zuev, I. A. Lepeshinskii, V. A. Reshetnikov, E. A. Istomin, “Vybor kriteriev i opredelenie ikh znachenii dlya otsenki kharaktera vzaimodeistviya faz v dvukhfaznykh turbulentnykh struyakh”, Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2012, no. 1, 42–54

[15] D. Anderson, J. C. Tannehill, R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, 2nd ed., Taylor Francis, London, 1997, 816 pp.

[16] L. E. Sternin, Osnovy gazodinamiki dvukhfaznykh techenii v soplakh, Mashinostroenie, M., 1974, 212 pp.

[17] Yu. V. Zuev, “O nekotorykh prichinakh nemonotonnogo izmeneniya kontsentratsii diskretnoi fazy v dvukhfaznoi turbulentnoi strue”, Izvestiya Rossiiskoi akademii nauk. Mekhanika zhidkosti i gaza, 2020, no. 2, 51–60 | DOI | MR