On determining the elastic limit of an adhesive layer in the opening mode of loading
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 59-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the problem of determining the limit of elastic strain of an extremely thin adhesive layer in the opening mode of loading (mode I) is considered. The presence of a nonzero component of the stress tensor along the layer axis is taken into account. The Tresca – Saint-Venant criterion is used as a condition for the transition to a plastic strain state. On the basis of the general variational problem formulation with account for restrictions on the displacement field, the problem is formulated in a differential form. A simplified problem formulation is solved analytically. According to the solution, the stress state in the layer does not depend on its thickness and is specified by the plane problem type. In the plane strain state, the cleavage stress significantly exceeds that in the plane stress state. In this case, Poisson's ratio of the adhesive significantly affects the ratio of cleavage stresses. For a certain value of Poisson's ratio, the Irwin empirical correction is obtained. It is shown that for the transition to a plastic state in the case of plane strain, larger external load is required in contrast to the plane stress state. Due to the finiteness of the stress state in the adhesive layer, as the relative thickness of the layer tends to zero, the plasticity occurs in the layer at an arbitrary small external load.
Keywords: elasticity, extremely thin layer, opening mode of loading.
Mots-clés : Tresca–Saint-Venant criterion
@article{VTGU_2023_83_a5,
     author = {V. E. Bogacheva and V. V. Glagolev and L. V. Glagolev and A. A. Markin},
     title = {On determining the elastic limit of an adhesive layer in the opening mode of loading},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {59--73},
     year = {2023},
     number = {83},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_83_a5/}
}
TY  - JOUR
AU  - V. E. Bogacheva
AU  - V. V. Glagolev
AU  - L. V. Glagolev
AU  - A. A. Markin
TI  - On determining the elastic limit of an adhesive layer in the opening mode of loading
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 59
EP  - 73
IS  - 83
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_83_a5/
LA  - ru
ID  - VTGU_2023_83_a5
ER  - 
%0 Journal Article
%A V. E. Bogacheva
%A V. V. Glagolev
%A L. V. Glagolev
%A A. A. Markin
%T On determining the elastic limit of an adhesive layer in the opening mode of loading
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 59-73
%N 83
%U http://geodesic.mathdoc.fr/item/VTGU_2023_83_a5/
%G ru
%F VTGU_2023_83_a5
V. E. Bogacheva; V. V. Glagolev; L. V. Glagolev; A. A. Markin. On determining the elastic limit of an adhesive layer in the opening mode of loading. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 59-73. http://geodesic.mathdoc.fr/item/VTGU_2023_83_a5/

[1] G. P. Cherepanov, Mekhanika razrusheniya kompozitsionnykh materialov, Nauka, M., 1983, 296 pp.

[2] Z. Suo, J. W. Hutchinson, “Interface crack between two elastic layers”, International Journal of Fracture, 43:1 (1990), 1–18 | DOI

[3] G. R. Irwin, “Crack-extension force for part-through crack in a plate”, Transactions of the American Society of Mechanical Engineers. Ser. E. Journal of Applied Mechanics, 29 (1962), 651–654 | DOI

[4] G. I. Barenblatt, “The mathematical theory of equilibrium cracks in brittle fracture”, Advanced in Applied Mechanics, 7 (1962), 55–129 | DOI

[5] “The special issue: Cohesive models”, Engineering Fracture Mechanics, 70:14 (2003), 1741–1987 | DOI

[6] N. S. Astapov, V. M. Kornev, V. D. Kurguzov, “Model rassloeniya raznomodulnogo bimateriala s treschinoi”, Fizicheskaya mezomekhanika, 19:4 (2016), 49–57

[7] J. W. Hutchinson, “Singular behavior at the end of a tensile crack tip in a hardening material”, Journal of The Mechanics and Physics of Solids, 16:1 (1968), 13–31 | DOI | Zbl

[8] K. B. Ustinov, R. Massabo, D. S. Lisovenko, “Orthotropic strip with central semi-infinite crack under arbitrary loads applied far apart from the crack tip. Analytical solution”, Engineering Failure Analysis, 110 (2020), 104410 | DOI

[9] M. G. Andrews, R. Massabo, “The effects of shear and near tip deformations on energy release rate and mode mixity of edge-cracked orthotropic layers”, Engineering Fracture Mechanics, 74:17 (2007), 2700–2720 | DOI

[10] K. F. Chernykh, Vvedenie v fizicheski i geometricheski nelineinuyu teoriyu treschin, Nauka, M., 1996, 288 pp.

[11] U. Stigh, K. S. Alfredsson, T. Andersson, A. Biel, T. Carlberger, K. Salomonsson, “Some aspects of cohesive models and modelling with special application to strength of adhesive layers”, International Journal of Fracture, 165 (2010), 149–162 | DOI | Zbl

[12] R. V. Goldshtein, M. N. Perelmuter, “Rost treschin po granitse soedineniya materialov”, Problemy mekhaniki, sb. st., Fizmatlit, M., 2003, 221–239

[13] D. S. Dugdale, “Yielding of steel sheets containing slits”, Journal of the Mechanics and Physics of Solids, 8:2 (1960), 100–104 | DOI

[14] M. Ya. Leonov, V. V. Panasyuk, “Razvitie melchaishikh treschin v tverdom tele”, Prikladnaya mekhanika, 5:4 (1959), 391–401

[15] G. R. Irwin, “Plastic Zone Near a Crack and Fracture Toughness”, 7th Sagamore Ordnance Materials Research Conference, 1960, 63–78

[16] G. R. Irwin, “Linear fracture mechanics, fracture transition, and fracture control”, Engineering Fracture Mechanics, 1:2 (1968), 241–257 | DOI

[17] R. M. Lopes, R. D.S. G. Campilho, F. J.G. da Silva, T. M.S. Faneco, “Comparative evaluation of the Double-Cantilever Beam and Tapered Double-Cantilever Beam tests for estimation of the tensile fracture toughness of adhesive joints”, Journal of Adhesion and Adhesives, 67 (2016), 103–111 | DOI

[18] V. V. Glagolev, A. A. Markin, “Fracture models for solid bodies, based on a linear scale parameter”, International Journal of Solids and Structures, 158 (2019), 141–149 | DOI

[19] V. E. Bogacheva, V. V. Glagolev, L. V. Glagolev, O. V. Inchenko, A. A. Markin, “Ob odnom podkhode k otsenke prochnosti adgezionnogo sloya v sloistom kompozite”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 64, 63–76 | DOI | MR

[20] F. Berto, V. V. Glagolev, L. V. Glagolev, A. A. Markin, “About the influence of the elastoplastic properties of the adhesive on the value of the J-integral in the DCB sample”, International Journal of Fracture, 232:1 (2021), 43–54 | DOI

[21] H. Tresca, “Memoire sur l'ecoulement des corps solides”, Mem pres par div savants, 18 (1868), 733–799

[22] A. Yu. Ishlinskii, D. D. Ivlev, Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2001, 701 pp.

[23] R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates”, ASME Journal of Applied Mechanics, 18 (1951), 31–38 | DOI | Zbl

[24] V. E. Bogacheva, V. V. Glagolev, L. V. Glagolev, A. A. Markin, “Napryazhennoe sostoyanie i usloviya initsiirovaniya treschiny v adgezionnom sloe kompozita”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2021, no. 3, 22–34 | DOI