On the boundedness of the integral convolution operator in a pair of classical Lebesgue spaces $L_p$ and $L_r$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 52-58
Voir la notice de l'article provenant de la source Math-Net.Ru
In terms of the kernel of an integral convolution operator, a constructive criterion for its boundedness in a pair of classical Lebesgue spaces $L_p$ and $L_r$ is obtained. It is shown that in order for the integral convolution operator to act boundedly from $L_p$ to $L_{r,p}$, it is necessary and sufficient that the kernel $K(t)$ of the operator belonged to the Marcinkiewicz space $M_{t^{1-1/q}}$.
Keywords:
integral convolution operator, boundedness, boundedness criterion
Mots-clés : Lebesgue spaces
Mots-clés : Lebesgue spaces
@article{VTGU_2023_83_a4,
author = {E. A. Pavlov and A. I. Furmenko},
title = {On the boundedness of the integral convolution operator in a pair of classical {Lebesgue} spaces $L_p$ and $L_r$},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {52--58},
publisher = {mathdoc},
number = {83},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_83_a4/}
}
TY - JOUR AU - E. A. Pavlov AU - A. I. Furmenko TI - On the boundedness of the integral convolution operator in a pair of classical Lebesgue spaces $L_p$ and $L_r$ JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 52 EP - 58 IS - 83 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2023_83_a4/ LA - ru ID - VTGU_2023_83_a4 ER -
%0 Journal Article %A E. A. Pavlov %A A. I. Furmenko %T On the boundedness of the integral convolution operator in a pair of classical Lebesgue spaces $L_p$ and $L_r$ %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 52-58 %N 83 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2023_83_a4/ %G ru %F VTGU_2023_83_a4
E. A. Pavlov; A. I. Furmenko. On the boundedness of the integral convolution operator in a pair of classical Lebesgue spaces $L_p$ and $L_r$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 52-58. http://geodesic.mathdoc.fr/item/VTGU_2023_83_a4/