On approximation of the normal derivative of the single layer heat potential near the boundary of a two-dimensional domain
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 31-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of piecewise-quadratic interpolation, semi-analytical approximations of the normal derivative of the thermal potential of a simple layer are obtained, which converge with a cubic velocity uniformly near the boundary of a two-dimensional spatial region. With some simplifications, it is proved that the use of a number of standard quadrature formulas leads to a violation of the uniform convergence of approximations of the normal derivative near the boundary of the domain. The theoretical conclusions are confirmed by the results of calculating the normal derivative of the solution of the second boundary value problem of heat conduction in a circular region.
Mots-clés : quadrature formula, uniform convergence.
Keywords: normal derivative, single layer heat potential, boundary element, collocation
@article{VTGU_2023_83_a3,
     author = {Ivanov D.Yu.},
     title = {On approximation of the normal derivative of the single layer heat potential near the boundary of a two-dimensional domain},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {31--51},
     year = {2023},
     number = {83},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_83_a3/}
}
TY  - JOUR
AU  - Ivanov D.Yu.
TI  - On approximation of the normal derivative of the single layer heat potential near the boundary of a two-dimensional domain
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 31
EP  - 51
IS  - 83
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_83_a3/
LA  - ru
ID  - VTGU_2023_83_a3
ER  - 
%0 Journal Article
%A Ivanov D.Yu.
%T On approximation of the normal derivative of the single layer heat potential near the boundary of a two-dimensional domain
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 31-51
%N 83
%U http://geodesic.mathdoc.fr/item/VTGU_2023_83_a3/
%G ru
%F VTGU_2023_83_a3
Ivanov D.Yu. On approximation of the normal derivative of the single layer heat potential near the boundary of a two-dimensional domain. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 31-51. http://geodesic.mathdoc.fr/item/VTGU_2023_83_a3/

[1] K. Brebbiya, Zh. Telles, L. Vroubel, Metody granichnykh elementov, Mir, M., 1987, 524 pp.

[2] V. Sladek, J. Sladek, M. Tanaka, “Optimal transformations of the integration variables in computation of singular integrals in BEM”, International Journal for Numerical Methods in Engineering, 47:7 (2000), 1263–1283 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[3] Y. Gu, W. Chen, J. Zhang, “Investigation on near-boundary solutions by singular boundary method”, Engineering Analysis with Boundary Elements, 36:8 (2012), 1173–1182 | DOI | MR | Zbl

[4] P. A. Krutitskii, A. D. Fedotova, V. V. Kolybasova, “Kvadraturnaya formula dlya potentsiala prostogo sloya”, Differentsialnye uravneniya, 55:9 (2019), 1269–1284 | DOI | Zbl

[5] P. A. Krutitskii, V. V. Kolybasova, “Chislennyi metod resheniya integralnykh uravnenii v zadache s naklonnoi proizvodnoi dlya uravneniya Laplasa vne razomknutykh krivykh”, Differentsialnye uravneniya, 52:9 (2016), 1262–1276 | DOI | Zbl

[6] V. Sladek, J. Sladek, M. Tanaka, “Numerical integration of logarithmic and nearly logarithmic singularity in BEMs”, Applied Mathematical Modelling, 25 (2001), 901–922 | DOI | Zbl

[7] P. R. Johnston, D. Elliott, “A sinh transformation for evaluating nearly singular boundary element integrals”, International Journal for Numerical Methods in Engineering, 62:4 (2005), 564–578 | DOI | MR | Zbl

[8] Z. J. Fu, W. Chen, W. Qu, “Numerical investigation on three treatments for eliminating the singularities of acoustic fundamental solutions in the singular boundary method”, WIT Transactions on Modelling and Simulation, 56 (2014), 15–26 | Zbl

[9] D. Yu. Ivanov, “Utochnenie kollokatsionnogo metoda granichnykh elementov vblizi granitsy oblasti v sluchae dvumernykh zadach nestatsionarnoi teploprovodnosti s granichnymi usloviyami vtorogo i tretego roda”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 57, 5–25 | DOI | Zbl

[10] D. Yu. Ivanov, “Utochnenie kollokatsionnogo metoda granichnykh elementov vblizi granitsy dvumernoi oblasti s pomoschyu poluanaliticheskoi approksimatsii teplovogo potentsiala dvoinogo sloya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 65, 30–52 | Zbl

[11] P. A. Krutitskii, I. O. Reznichenko, V. V. Kolybasova, “Kvadraturnaya formula dlya pryamogo znacheniya normalnoi proizvodnoi potentsiala prostogo sloya”, Differentsialnye uravneniya, 56:9 (2020), 1270–1288 | DOI | Zbl

[12] M. N. Bakhshalyeva, “Kvadraturnaya formula dlya proizvodnoi logarifmicheskikh potentsialov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 68, 5–22 | MR | Zbl

[13] E. H. Khalilov, “Cubic formula for the normal derivative of a double layer acoustic potential”, Transactions of NAS of Azerbaijan, series of physical-technical and mathematical sciences, 34:1 (2014), 73–82 | Zbl

[14] D. Yu. Ivanov, “Ustoichivaya razreshimost v prostranstvakh differentsiruemykh funktsii nekotorykh dvumernykh integralnykh uravnenii teploprovodnosti s operatornopolugruppovym yadrom”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2015, no. 38, 33–45 | Zbl

[15] V. I. Smirnov, Kurs vysshei matematiki, ch. 2, v. 4, Nauka, M., 1981, 551 pp.

[16] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, BINOM. Laboratoriya znanii, M., 2008, 636 pp.

[17] D. Yu. Ivanov, “Reshenie dvumernykh kraevykh zadach, sootvetstvuyuschikh nachalno-kraevym zadacham diffuzii na pryamom tsilindre”, Differentsialnye uravneniya, 46:8 (2010), 1094–1103 | MR | Zbl

[18] D. Yu. Ivanov, “Reshenie kraevykh zadach dlya dvumernogo ellipticheskogo differentsialno-operatornogo uravneniya v abstraktnom gilbertovom prostranstve s pomoschyu metoda granichnykh integralnykh uravnenii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 60, 11–31 | Zbl

[19] D. Yu. Ivanov, “O reshenii ploskikh zadach nestatsionarnoi teploprovodnosti kollokatsionnym metodom granichnykh elementov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2017, no. 50, 9–29

[20] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatlit, M., 2001, 863 pp.