Keywords: normal derivative, single layer heat potential, boundary element, collocation
@article{VTGU_2023_83_a3,
author = {Ivanov D.Yu.},
title = {On approximation of the normal derivative of the single layer heat potential near the boundary of a two-dimensional domain},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {31--51},
year = {2023},
number = {83},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_83_a3/}
}
TY - JOUR AU - Ivanov D.Yu. TI - On approximation of the normal derivative of the single layer heat potential near the boundary of a two-dimensional domain JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 31 EP - 51 IS - 83 UR - http://geodesic.mathdoc.fr/item/VTGU_2023_83_a3/ LA - ru ID - VTGU_2023_83_a3 ER -
%0 Journal Article %A Ivanov D.Yu. %T On approximation of the normal derivative of the single layer heat potential near the boundary of a two-dimensional domain %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 31-51 %N 83 %U http://geodesic.mathdoc.fr/item/VTGU_2023_83_a3/ %G ru %F VTGU_2023_83_a3
Ivanov D.Yu. On approximation of the normal derivative of the single layer heat potential near the boundary of a two-dimensional domain. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 31-51. http://geodesic.mathdoc.fr/item/VTGU_2023_83_a3/
[1] K. Brebbiya, Zh. Telles, L. Vroubel, Metody granichnykh elementov, Mir, M., 1987, 524 pp.
[2] V. Sladek, J. Sladek, M. Tanaka, “Optimal transformations of the integration variables in computation of singular integrals in BEM”, International Journal for Numerical Methods in Engineering, 47:7 (2000), 1263–1283 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[3] Y. Gu, W. Chen, J. Zhang, “Investigation on near-boundary solutions by singular boundary method”, Engineering Analysis with Boundary Elements, 36:8 (2012), 1173–1182 | DOI | MR | Zbl
[4] P. A. Krutitskii, A. D. Fedotova, V. V. Kolybasova, “Kvadraturnaya formula dlya potentsiala prostogo sloya”, Differentsialnye uravneniya, 55:9 (2019), 1269–1284 | DOI | Zbl
[5] P. A. Krutitskii, V. V. Kolybasova, “Chislennyi metod resheniya integralnykh uravnenii v zadache s naklonnoi proizvodnoi dlya uravneniya Laplasa vne razomknutykh krivykh”, Differentsialnye uravneniya, 52:9 (2016), 1262–1276 | DOI | Zbl
[6] V. Sladek, J. Sladek, M. Tanaka, “Numerical integration of logarithmic and nearly logarithmic singularity in BEMs”, Applied Mathematical Modelling, 25 (2001), 901–922 | DOI | Zbl
[7] P. R. Johnston, D. Elliott, “A sinh transformation for evaluating nearly singular boundary element integrals”, International Journal for Numerical Methods in Engineering, 62:4 (2005), 564–578 | DOI | MR | Zbl
[8] Z. J. Fu, W. Chen, W. Qu, “Numerical investigation on three treatments for eliminating the singularities of acoustic fundamental solutions in the singular boundary method”, WIT Transactions on Modelling and Simulation, 56 (2014), 15–26 | Zbl
[9] D. Yu. Ivanov, “Utochnenie kollokatsionnogo metoda granichnykh elementov vblizi granitsy oblasti v sluchae dvumernykh zadach nestatsionarnoi teploprovodnosti s granichnymi usloviyami vtorogo i tretego roda”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 57, 5–25 | DOI | Zbl
[10] D. Yu. Ivanov, “Utochnenie kollokatsionnogo metoda granichnykh elementov vblizi granitsy dvumernoi oblasti s pomoschyu poluanaliticheskoi approksimatsii teplovogo potentsiala dvoinogo sloya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 65, 30–52 | Zbl
[11] P. A. Krutitskii, I. O. Reznichenko, V. V. Kolybasova, “Kvadraturnaya formula dlya pryamogo znacheniya normalnoi proizvodnoi potentsiala prostogo sloya”, Differentsialnye uravneniya, 56:9 (2020), 1270–1288 | DOI | Zbl
[12] M. N. Bakhshalyeva, “Kvadraturnaya formula dlya proizvodnoi logarifmicheskikh potentsialov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 68, 5–22 | MR | Zbl
[13] E. H. Khalilov, “Cubic formula for the normal derivative of a double layer acoustic potential”, Transactions of NAS of Azerbaijan, series of physical-technical and mathematical sciences, 34:1 (2014), 73–82 | Zbl
[14] D. Yu. Ivanov, “Ustoichivaya razreshimost v prostranstvakh differentsiruemykh funktsii nekotorykh dvumernykh integralnykh uravnenii teploprovodnosti s operatornopolugruppovym yadrom”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2015, no. 38, 33–45 | Zbl
[15] V. I. Smirnov, Kurs vysshei matematiki, ch. 2, v. 4, Nauka, M., 1981, 551 pp.
[16] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, BINOM. Laboratoriya znanii, M., 2008, 636 pp.
[17] D. Yu. Ivanov, “Reshenie dvumernykh kraevykh zadach, sootvetstvuyuschikh nachalno-kraevym zadacham diffuzii na pryamom tsilindre”, Differentsialnye uravneniya, 46:8 (2010), 1094–1103 | MR | Zbl
[18] D. Yu. Ivanov, “Reshenie kraevykh zadach dlya dvumernogo ellipticheskogo differentsialno-operatornogo uravneniya v abstraktnom gilbertovom prostranstve s pomoschyu metoda granichnykh integralnykh uravnenii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 60, 11–31 | Zbl
[19] D. Yu. Ivanov, “O reshenii ploskikh zadach nestatsionarnoi teploprovodnosti kollokatsionnym metodom granichnykh elementov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2017, no. 50, 9–29
[20] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatlit, M., 2001, 863 pp.