On the box dimension of subsets of a metric compact space
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 24-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of possible values of the lower capacity dimension $\underline{\mathrm{dim}}_B$ of subsets of the metric compact set $X$ is considered. The concept of dimension $f\underline{\mathrm{dim}}_BX$ is introduced, which characterizes the asymptotics of the lower capacity dimension of closed $\varepsilon$-neighborhoods of finite subsets of the compact set $X$ for $\varepsilon\to0$. For a wide class of metric compact sets, the dimension $f\underline{\mathrm{dim}}_BX$ is the same as $\underline{\mathrm{dim}}_BX$. The following theorem is proved: for any non-negative number $r there exists a closed subset $Z_r\subset X$ such that $\underline{\mathrm{dim}}_BZ_r=r$.
Keywords: metric compact space, capacitarian dimension, intermediate value theorem for the capacitarian dimension.
Mots-clés : quantization dimension
@article{VTGU_2023_83_a2,
     author = {A. V. Ivanov},
     title = {On the box dimension of subsets of a metric compact space},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {24--30},
     year = {2023},
     number = {83},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_83_a2/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - On the box dimension of subsets of a metric compact space
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 24
EP  - 30
IS  - 83
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_83_a2/
LA  - ru
ID  - VTGU_2023_83_a2
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T On the box dimension of subsets of a metric compact space
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 24-30
%N 83
%U http://geodesic.mathdoc.fr/item/VTGU_2023_83_a2/
%G ru
%F VTGU_2023_83_a2
A. V. Ivanov. On the box dimension of subsets of a metric compact space. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 24-30. http://geodesic.mathdoc.fr/item/VTGU_2023_83_a2/

[1] V. V. Fedorchuk, “Bikompakty bez promezhutochnykh razmernostei”, Doklady AN SSSR, 213:4 (1973), 795–797 | Zbl

[2] A. V. Ivanov, “O mnozhestve znachenii razmernosti kvantovaniya veroyatnostnykh mer na metricheskom kompakte”, Sibirskii matematicheskii zhurnal, 63:5 (2022), 1074–1080 | DOI

[3] A. V. Ivanov, “On quantization dimensions of idempotent probability measures”, Topology and its Applications, 306:1 (2022), 107931 | DOI | Zbl

[4] Ya. B. Pesin, Teoriya razmernosti i dinamicheskie sistemy: sovremennyi vzglyad i prilozheniya, In-t kompyuternykh issled., M.–Izhevsk, 2013, 404 pp.