On the box dimension of subsets of a metric compact space
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 24-30
Voir la notice de l'article provenant de la source Math-Net.Ru
The question of possible values of the lower capacity dimension $\underline{\mathrm{dim}}_B$ of subsets of the metric compact set $X$ is considered. The concept of dimension $f\underline{\mathrm{dim}}_BX$ is introduced, which characterizes the asymptotics of the lower capacity dimension of closed $\varepsilon$-neighborhoods of finite subsets of the compact set $X$ for $\varepsilon\to0$. For a wide class of metric compact sets, the dimension $f\underline{\mathrm{dim}}_BX$ is the same as $\underline{\mathrm{dim}}_BX$. The following theorem is proved: for any non-negative number $r$ there exists a closed subset $Z_r\subset X$ such that $\underline{\mathrm{dim}}_BZ_r=r$.
Keywords:
metric compact space, capacitarian dimension, intermediate value theorem for the capacitarian dimension.
Mots-clés : quantization dimension
Mots-clés : quantization dimension
@article{VTGU_2023_83_a2,
author = {A. V. Ivanov},
title = {On the box dimension of subsets of a metric compact space},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {24--30},
publisher = {mathdoc},
number = {83},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_83_a2/}
}
TY - JOUR AU - A. V. Ivanov TI - On the box dimension of subsets of a metric compact space JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 24 EP - 30 IS - 83 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2023_83_a2/ LA - ru ID - VTGU_2023_83_a2 ER -
A. V. Ivanov. On the box dimension of subsets of a metric compact space. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 24-30. http://geodesic.mathdoc.fr/item/VTGU_2023_83_a2/