Unsteady motions of spherical shells in a viscoelastic medium
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 166-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the unsteady motions of the spherical bodies immersed in a viscoelastic medium under the action of unsteady waves. The relation between stresses and strains complies with the hereditary Boltzmann–Voltaire integral. Using the integral Laplace transform, an exact solution of the equations of motion is obtained in the images. The integrand function in the images satisfies Jordan's lemma. Using the residue theorem, displacements and stresses are determined as the functions of time. An algorithm is developed, and a program is compiled in C++. The numerical results are obtained and analyzed. It is revealed that the kinematic factors, i.e. acceleration and velocity, of the spherical shell differ significantly from those of the viscoelastic medium. Under short-term exposure to waves (loads), the diagram of the stress-strain state changes: at all points of the shell, the maximum stresses and strains are significantly higher than average values, and the stress attains the maximum at the frontal point. Some differences are also found in the variation of time-displacement dependence for the spherical shell and surrounding viscoelastic medium.
Keywords: shell, viscoelastic medium, unsteady wave, stress, strain.
Mots-clés : Laplace transform
@article{VTGU_2023_83_a13,
     author = {I. I. Safarov and M. Kh. Teshaev},
     title = {Unsteady motions of spherical shells in a viscoelastic medium},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {166--179},
     year = {2023},
     number = {83},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_83_a13/}
}
TY  - JOUR
AU  - I. I. Safarov
AU  - M. Kh. Teshaev
TI  - Unsteady motions of spherical shells in a viscoelastic medium
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 166
EP  - 179
IS  - 83
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_83_a13/
LA  - ru
ID  - VTGU_2023_83_a13
ER  - 
%0 Journal Article
%A I. I. Safarov
%A M. Kh. Teshaev
%T Unsteady motions of spherical shells in a viscoelastic medium
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 166-179
%N 83
%U http://geodesic.mathdoc.fr/item/VTGU_2023_83_a13/
%G ru
%F VTGU_2023_83_a13
I. I. Safarov; M. Kh. Teshaev. Unsteady motions of spherical shells in a viscoelastic medium. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 166-179. http://geodesic.mathdoc.fr/item/VTGU_2023_83_a13/

[1] A. V. Vestyak, A. G. Gorshkov, D. V. Tarlakovskii, “Nestatsionarnoe vzaimodeistvie defor miruemykh tel s okruzhayuschei sredoi”, Itogi nauki i tekhniki. Mekhanika deformiru emogo tverdogo tela, 9, Nauka, M., 1985, 69–148

[2] C. C. Mow, Y. H. Pao, The Diffraction of Elastic waves and Dynamic Stress Concentrations, California, 1971, 682 pp.

[3] A. K. Pertsev, E. G. Platonov, Dinamika obolochek i plastin (nestatsionarnye zadachi), Sudostroenie, L., 1987, 316 pp.

[4] I. G. Filippov, O. A. Egorychev, Nestatsionarnye kolebaniya i difraktsiya voln v akusti cheskikh i uprugikh sredakh, Mashinostroenie, M., 1977, 304 pp.

[5] R. M. White, “Surface elastic waves”, Proceedings of the IEEE, 58:8 (1970), 1238–1276 | DOI

[6] A. Hasanov, N. Kurbanov, N. Mikhailova, “Investigation of Free Vibrations of Viscoelastic Bodies”, Problems of Cybernetics and Informatics, IV International Conference (Baku, 2012), v. III, 1–29

[7] N. T. Kurbanov, V. N. Nasibzada, “Investigation of forced oscillations viscoelastic shells”, Inter national Journal of Current Research, 7:07 (2015), 18356–18360

[8] I. I. Safarov, M. Kh. Teshaev, Z. I. Boltaev, Volnovoe protsessy v mekhanicheskom volnovode. Osnovy, kontseptsii, metody, Lambert Academic Publishing, 2012, 220 pp.

[9] S. A. Lychev, Yu. E. Senitskii, “Nesimmetrichnye integralnye preobrazovaniya i ikh pri lozheniya k zadacham vyazkouprugosti”, Vestnik Samarskogo gosudarstvennogo universi teta. Estestvenno-nauchnaya seriya, 2002, Spets. vyp.., 16–38 | Zbl

[10] Ed. Abramidze, El. Abramidze, “Analysis of nonlinear deformation task of layered cylindrical shell by local surface force and temperature”, J. Appl. Math. Inform. Mech., 24:2 (2019), 3–9 | MR | Zbl

[11] A. G. Gorshkov, D. V. Tarlakovskii, Nestatsionarnaya aerouprugost tel sfericheskoi formy, Nauka, M., 1990, 264 pp.

[12] S. A. Abdukadyrov, “Nestatsionarnoe deformirovanie tsilindricheskoi obolochki pri deistvii ploskoi volny sdviga”, Issledovaniya po teorii plastin i obolochek, 1992, no. 24, 118–124

[13] I. I. Safarov, Z. I. Boltaev, M. Sh. Axmedov, “Setting the Linear Oscillations of Structural Hetero geneity Viscoelastic Lamellar Systems with Point Relations”, J. Applied Mathematics, 6 (2015), 228–234 | DOI

[14] I. I. Safarov, Z. I. Boltaev, M. Sh. Axmedov, “Natural Oscillations of Cylindrical Bodies with External Friction on the Boundary”, J. Applied Mathematics, 6 (2015), 629–645 | DOI