Unsteady motions of spherical shells in a viscoelastic medium
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 166-179
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper considers the unsteady motions of the spherical bodies immersed in 
a viscoelastic medium under the action of unsteady waves. The relation between stresses 
and strains complies with the hereditary Boltzmann–Voltaire integral. Using the integral 
Laplace transform, an exact solution of the equations of motion is obtained in the images. 
The integrand function in the images satisfies Jordan's lemma. Using the residue theorem, displacements and stresses are determined as the functions of time. An algorithm is 
developed, and a program is compiled in C++. The numerical results are obtained and 
analyzed. It is revealed that the kinematic factors, i.e. acceleration and velocity, of the 
spherical shell differ significantly from those of the viscoelastic medium. Under short-term exposure to waves (loads), the diagram of the stress-strain state changes: at all 
points of the shell, the maximum stresses and strains are significantly higher than average 
values, and the stress attains the maximum at the frontal point. Some differences are also found in the variation of time-displacement dependence for the spherical shell and surrounding viscoelastic medium.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
shell, viscoelastic medium, unsteady wave, stress, strain.
Mots-clés : Laplace transform
                    
                  
                
                
                Mots-clés : Laplace transform
@article{VTGU_2023_83_a13,
     author = {I. I. Safarov and M. Kh. Teshaev},
     title = {Unsteady motions of spherical shells in a viscoelastic medium},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {166--179},
     publisher = {mathdoc},
     number = {83},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_83_a13/}
}
                      
                      
                    TY - JOUR AU - I. I. Safarov AU - M. Kh. Teshaev TI - Unsteady motions of spherical shells in a viscoelastic medium JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 166 EP - 179 IS - 83 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2023_83_a13/ LA - ru ID - VTGU_2023_83_a13 ER -
%0 Journal Article %A I. I. Safarov %A M. Kh. Teshaev %T Unsteady motions of spherical shells in a viscoelastic medium %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 166-179 %N 83 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2023_83_a13/ %G ru %F VTGU_2023_83_a13
I. I. Safarov; M. Kh. Teshaev. Unsteady motions of spherical shells in a viscoelastic medium. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 166-179. http://geodesic.mathdoc.fr/item/VTGU_2023_83_a13/
