Influence of the shape of meteoroids on their dynamics: radiation pressure and the Poynting–Robertson effect
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 151-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When calculating the evolution of meteoroid orbits, it is necessary to take into account radiation forces in addition to gravitational perturbations: the solar radiation pressure force and the Poynting–Robertson effect. The key parameter for meteoroids in this paper is $A/m$, which is the area-to-mass ratio of a meteoroid. In models describing the dynamics of meteoroids, for simplicity, one value of the $A/m$ parameter (for a spherical particle) is used for each model. However, this parameter is invariable during rotation of spherical particles, while it changes for real ones. Given the modern accuracy of the models, the decision to use a constant value of $A/m$ is justified. However, for future models, knowledge of the distribution of the midsection area of particles of different shapes can be useful. This work is motivated by the lack of studies on the influence of the shape of meteoroids on the structural characteristics of a model meteoroid stream in the literature. The purpose of this work is to fill this gap to some extent. A simple numerical method for obtaining the distribution of the cross-sectional area of a convex particle with a random orientation is proposed. The distributions for a cube, a cylinder, and an ellipsoid of revolution are obtained. A method for generating random numbers corresponding to a given discrete distribution is described. An example of estimating the influence of the Poynting–Robertson effect and solar radiation pressure on the model Geminid shower is given.
Keywords: meteoroid, midsection area, Poynting–Robertson effect, radiation pressure.
Mots-clés : radiation forces
@article{VTGU_2023_83_a12,
     author = {G. O. Ryabova},
     title = {Influence of the shape of meteoroids on their dynamics: radiation pressure and the {Poynting{\textendash}Robertson} effect},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {151--165},
     year = {2023},
     number = {83},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_83_a12/}
}
TY  - JOUR
AU  - G. O. Ryabova
TI  - Influence of the shape of meteoroids on their dynamics: radiation pressure and the Poynting–Robertson effect
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 151
EP  - 165
IS  - 83
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_83_a12/
LA  - ru
ID  - VTGU_2023_83_a12
ER  - 
%0 Journal Article
%A G. O. Ryabova
%T Influence of the shape of meteoroids on their dynamics: radiation pressure and the Poynting–Robertson effect
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 151-165
%N 83
%U http://geodesic.mathdoc.fr/item/VTGU_2023_83_a12/
%G ru
%F VTGU_2023_83_a12
G. O. Ryabova. Influence of the shape of meteoroids on their dynamics: radiation pressure and the Poynting–Robertson effect. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 151-165. http://geodesic.mathdoc.fr/item/VTGU_2023_83_a12/

[1] J. A. Burns, Ph. L. Lamy, S. Soter, “Radiation forces on small particles in the Solar System”, Icarus, 40:2 (1978), 1–48 | DOI

[2] G. O. Ryabova, Mathematical Modelling of Meteoroid Streams, Springer International Publishing, 2020 | DOI

[3] G. O. Ryabova, “On mean motion resonances in the Geminid meteoroid stream”, Planetary and Space Science, 210 (2022), 105378 | DOI

[4] F. L. Whipple, “A comet model. II. Physical relations for comets and meteors”, The Astrophysical Journal, 113 (1951), 464–474 | DOI

[5] I. Kapisinsky, “Nongravitational effects affecting small meteoroids in interplanetary space”, Contributions of the Astronomical Observatory Skalnate Pleso, 12 (1984), 99–111

[6] A. Z. Dolginov, “Alignment of interstellar and interplanetary grains”, Soviet Astronomy, 18:1 (1974), 33–38

[7] T. Gold, “The alignment of galactic dust”, Monthly Notices of the Royal Astronomical Society, 112 (1952), 215–218 | DOI

[8] B. G. Andersson, “Interstellar grain alignment: observational status”, Magnetic Fields in Diffuse Media, Astrophysics and Space Science Library, 407, Springer-Verlag, Berlin-Heidelberg, 2015, 59–87 | DOI

[9] D. Capek, “Rotation of cometary meteoroids”, Astronomy Astrophysics, 568:A39 (2014) | DOI

[10] F. Moreno, D. Guirado, O. Munoz, V. Zakharov, S. Ivanovski, M. Fulle, A. Rotundi, E. Frattin, I. Bertini, “Dynamics of irregularly shaped cometary particles subjected to outflowing gas and solar radiative forces and torques”, Monthly Notices of the Royal Astronomical Society, 510 (2022), 5142–5153 | DOI

[11] J. F. Crifo, In-situ Doppler velocimetry of very large grains: An essential goal for future cometary investigations, ESA, Noordwijk, 1991, 65–70

[12] I. P. Williams, T. J. Jopek, R. Rudawska, J. Toth, L. Kornos, “Minor meteor showers and the sporadic background”, Meteoroids: Sources of Meteors on Earth and Beyond, Cambridge University Press, Cambridge, 2019, 210–243 | DOI

[13] G. O. Ryabova, “Age of the Geminid meteor stream (Review)”, Solar System Research, 33:3 (1999), 224–238

[14] G. O. Ryabova, “Averaged changes in the orbital elements of meteoroids due to Yarkovsky–Radzievskij force”, Complex Planetary Systems, Proceedings of the IAUS, 310, 2014, 160–161 | DOI

[15] L. A. Santalo, Integral Geometry and Geometric Probability, Addison-Wesley, Reading, MA, 1976 | Zbl

[16] G. A. Korn, T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems and Formulas for Reference and Review, 2nd enl. and rev. ed., McGraw-Hill, New York, 1968

[17] C. Forbes, M. Evans, N. Hastings, B. Peacock, Statistical Distributions, 4th ed., Wiley, New York, 2011 | Zbl

[18] S. Brandt, Data Analysis. Statistical and Computational Methods for Scientists and Engineers, 4th ed., Springer, Cham, 2014