A study of the stress-strain state of cancellous bone tissue under uniaxial compression
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 127-142
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the stress-strain state of model fragments of cancellous bone tissue under uniaxial compression is studied. The architecture of model cancellous tissue fragments mimics that of natural bone fragments. The model fragments of cancellous bone tissue are represented by a set of trabecular nodes, including the central element and the principal and secondary trabeculae of the certain length, thickness, and mineral content. The study of the von Mises stress distribution and normal strains shows that for the samples with short principal trabeculae, the largest normal strains and von Mises stresses are localized in the surface layers of the principal trabeculae. These characteristics are uniformly distributed over the thickness of the middle part of the principal trabeculae and decrease in their values with an increase in the principal trabecula length. It is revealed that with an increase in the length of the cancellous bone principal trabeculae, the effective longitudinal modulus of elasticity of the bone sample decreases according to a power law. The interaction between the principal and secondary trabeculae determines the deformation response of the bone samples in three mutually perpendicular directions under axial compression, which variously manifests itself depending on structural parameters and mass fraction of the trabeculae minerals.
Keywords: stress-strain state, cancellous bone tissue, trabeculae, mineral content, computer simulation.
Mots-clés : uniaxial compression
@article{VTGU_2023_83_a10,
     author = {E. S. Marchenko and T. V. Chaykovskaya},
     title = {A study of the stress-strain state of cancellous bone tissue under uniaxial compression},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {127--142},
     year = {2023},
     number = {83},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_83_a10/}
}
TY  - JOUR
AU  - E. S. Marchenko
AU  - T. V. Chaykovskaya
TI  - A study of the stress-strain state of cancellous bone tissue under uniaxial compression
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 127
EP  - 142
IS  - 83
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_83_a10/
LA  - ru
ID  - VTGU_2023_83_a10
ER  - 
%0 Journal Article
%A E. S. Marchenko
%A T. V. Chaykovskaya
%T A study of the stress-strain state of cancellous bone tissue under uniaxial compression
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 127-142
%N 83
%U http://geodesic.mathdoc.fr/item/VTGU_2023_83_a10/
%G ru
%F VTGU_2023_83_a10
E. S. Marchenko; T. V. Chaykovskaya. A study of the stress-strain state of cancellous bone tissue under uniaxial compression. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 127-142. http://geodesic.mathdoc.fr/item/VTGU_2023_83_a10/

[1] A. S. Avrunin, E. A. Tses, “The birth of a new scientific field biomechanics of the skeleton. Julius Wolff and his work “Das Gesetz der Transformation der Knochen””, History of Medicine, 3:4 (2016), 447–461 | DOI

[2] S. J. Mellon, K. E. Tanner, “Bone and its adaptation to mechanical loading: a review”, International Materials Reviews, 57:5 (2012), 235–255 | DOI

[3] T. M. Keaveny, E. F. Morgan, O. C. Yeh, Biomedical Engineering and Design Handbook, ed. M. Kutz, McGraw-Hill, New York, 2009

[4] S. C. Cowin, Bone Mechanics Handbook, 2nd edition, CRC Press, New York, 2001

[5] N. Rosa, M. F.S. F. Moura, S. Olhero, R. Simoes, F. D. Magalhaes, A. T. Marques, J. P.S. Ferreira, A. R. Reis, M. Carvalho, M. Parente, “Bone: An Outstanding Composite Material”, Applied Sciences, 12:7 (2022), 3381 | DOI

[6] E. Novitskaya et al, “Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: a review”, Theoretical and Applied Mechanics, 38:3 (2011), 209–297 | DOI | MR | Zbl

[7] H. Orava et al, “Changes in subchondral bone structure and mechanical properties do not substantially affect cartilage mechanical responses A finite element study”, Journal of the Mechanical Behavior of Biomedical Materials, 128 (2022), 105129 | DOI

[8] T. Lee et al, “Fast tool evaluation of iliac crest tissue elastic properties using the reducedbasis methods”, Journal of Biomechanical Engineering, 132 (2010), 121009 | DOI

[9] L. Xi et al, “Separating effects of bone-quality changes at multiple scales in steroid-induced osteoporosis: Combining multiscale experimental and modelling approaches”, Mechanics of Materials, 157 (2021), 103821 | DOI

[10] M. Lovrenic-Jugovic, Z. Tonkovic, I. Skozrit, “Experimental and numerical investigation of cyclic creep and recovery behavior of bovine cortical bone”, Mechanics of Materials, 146 (2020), 103407 | DOI

[11] V. A. Lubarda, E. E. Novitskaya, J. Mc. Kittricka, S. G. Bodde, P. Y. Chen, “Elastic properties of cancellous bone in terms of elastic properties of its mineral and protein phases with application to their osteoporotic degradation”, Mechanics of Materials, 44 (2012), 139–150 | DOI

[12] T. Kolmakova, “Computer modeling of the structure of the cortical and trabecular bone tissue”, AIP Conference Proceedings, 1683, 2015, 020087 | DOI

[13] Y. N. Lastovkina, T. V. Kolmakova, “Computer modelling of the microstructure of the trabecular bone fragments for the study of stress-strain state”, IOP Publishing: Journal of Physics. Conference Series, 769 (2016), 012020 | DOI

[14] D. Dagan, M. Be'ery, A. Gefen, “Single-trabecula building block for large-scale finite element models of cancellous bone”, Med. Biol. Eng. Comput., 42 (2004), 549–556 | DOI

[15] R. Kristensen, Vvedenie v mekhaniku kompozitov, per. s angl. A.I. Beilya, N.P. Zhmudya, ed. Yu.M. Tarnopolskii, Mir, M., 1982, 334 pp.

[16] L. Cyganik, M. Binkowski, G. Kokot, T. Rusin, P. Popik, F. Bolechala, R. Nowak, Z. Wrobel, A. John, “Prediction of Young's modulus of trabeculae in microscale using macro-scale's relationships between bone density and mechanical properties”, Journal of the Mechanical Behavior of Biomedical Materials, 36 (2014), 120–134 | DOI

[17] R. Carter Dennis, H. Schwab Greg, M. Dan Spengler, “Tensile Fracture of Cancellous Bone”, Acta Orthopaedica Scandinavica, 51 (1980), 733–741 | DOI