On cuts of the quotient field of a ring of formal power series
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In studies related to the classification of real-closed fields, fields of formal power series with a multiplicative divisible group of Archimedean classes are essentially used. Consider a linearly ordered Abelian divisible group $G = G(L,\mathbf{Q})$, which consists of words with generators from a linearly ordered set $L$ similar to the ordinal $\omega_1$ and rational exponents. The article deals with the properties of sections of subfields of the field of bounded formal power series $\mathbf{R}[[G,\aleph_1]]$. For all $\xi_i\in L$ we set $t_i=\xi_i^{-1}$. Consider an infinite strictly decreasing sequence $\{t_\gamma\}_{\gamma\in\Gamma}$, where $\Gamma\subseteq\omega_1\setminus\{1\}$ is an arbitrary infinite set. Series of the form $x = \sum\limits_{\gamma\in\Gamma} r_\gamma\cdot t_\gamma\in \mathbf{R}[[G]]$, where $r_\gamma\ne0$ for all $\gamma\in\Gamma$, i.e. $\mathrm{supp}(x) = \{t_\gamma \mid \gamma\in\Gamma\}$, we will call series of the form ($*$). We prove that series of the form ($*$) for $r_\gamma$ for all $\gamma\in\Gamma$ generate in the field $qf\mathbf{R}[[G,\aleph_0]] = K$ symmetric non-fundamental sections of confinality $(\aleph_0,\aleph_0)$, in the real closure $\overline{qf\mathbf{R}[[G,\aleph_0]]}= \overline{K}$ series ($*$) generate symmetric sections. Let $H$ be the least by inclusion real closed subfield of the field $\mathbf{R}[[G,\aleph_1]]$ containing $\overline{K}$ and all truncations of the series $x_{\omega_1}=\sum\limits_{\gamma\in\omega_1}1\cdot t_\gamma$. Then $\overline{K}\ne H$ and the elements of the real closure of the simple transcendental extension $\overline{H(x_{\omega_1})}$ that do not belong to $H$ generate symmetric sections of the type $(\aleph_1,\aleph_1)$ in the field $H$.
Keywords: divisible totally ordered Abelian group, real closed field, field of bounded formal (generalized) power series, symmetric cut (non-ball cut), cofinality of a cut, fundamental cut (Scott cut), quotient field.
@article{VTGU_2023_83_a0,
     author = {N. Yu. Galanova},
     title = {On cuts of the quotient field of a ring of formal power series},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--16},
     year = {2023},
     number = {83},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_83_a0/}
}
TY  - JOUR
AU  - N. Yu. Galanova
TI  - On cuts of the quotient field of a ring of formal power series
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 5
EP  - 16
IS  - 83
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_83_a0/
LA  - ru
ID  - VTGU_2023_83_a0
ER  - 
%0 Journal Article
%A N. Yu. Galanova
%T On cuts of the quotient field of a ring of formal power series
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 5-16
%N 83
%U http://geodesic.mathdoc.fr/item/VTGU_2023_83_a0/
%G ru
%F VTGU_2023_83_a0
N. Yu. Galanova. On cuts of the quotient field of a ring of formal power series. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 83 (2023), pp. 5-16. http://geodesic.mathdoc.fr/item/VTGU_2023_83_a0/

[1] L. Fuks, Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965

[2] N. Burbaki, Algebra. Mnogochleny i polya. Uporyadochennye gruppy, per. s fr., Mir, M., 1965

[3] H. J. Dales, H. Woodin, Super-real fields, Clarendon Press, Oxford, 1996 | Zbl

[4] N. Yu. Galanova, “Simmetriya sechenii v polyakh formalnykh stepennykh ryadov i nestandartnoi veschestvennoi pryamoi”, Algebra i logika, 42:1 (2003), 26–36 | MR | Zbl

[5] A. I. Kokorin, V. M. Kopytov, Lineino uporyadochennye gruppy, Nauka, M., 1972

[6] F. V. Kuhlmann, “Selected methods for the classification of cuts and their applications”, Proceedings of the 5th Joint Conferences on Algebra, Logic and Number Theory (June 24-29, 2018, Bedlewo), Banach Center Publications, 121, 2020, 85–106 | DOI | Zbl

[7] G. G. Pestov, “K teorii sechenii v uporyadochennykh polyakh”, Sibirskii matematicheskii zhurnal, 42:6 (2001), 1213–1456

[8] N. Yu. Galanova, G. G. Pestov, “Simmetriya sechenii v polyakh formalnykh stepennykh ryadov”, Algebra i logika, 47:2 (2008), 174–185 | MR | Zbl

[9] N. Yu. Galanova, “Symmetric and asymmetric gaps in some fields of formal power series”, Serdica Math., 30 (2004), 495–504 | MR | Zbl

[10] N. Yu. Galanova, “An investigation of the fields of bounded formal power series by means of theory of cuts”, Acta Appl. Math., 85 (2005), 121–126 | DOI | MR | Zbl

[11] S. Shelah, “Quite complete real closed fields”, Israel Journal of Mathematics, 142 (2004), 261–272 | DOI | MR | Zbl

[12] N. Yu. Galanova, “Lineino uporyadochennye polya s simmetrichnymi secheniyami”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2017, no. 46, 14–20 | DOI | MR | Zbl

[13] N. Yu. Galanova, “O simmetrichnykh secheniyakh odnogo veschestvenno zamknutogo polya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 53, 5–15 | DOI | MR | Zbl