Numerical simulation of turbulent flows on the basis of a two-fluid model of turbulence
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 120-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper discusses the capabilities of a two-fluid turbulence model for solving complex physical problems such as separated flow around a square cylinder and laminar- turbulent flow in a suddenly expanding channel. The numerical solution to the system of hydrodynamic equations is implemented using a finite-difference scheme. At each time step, the velocities are corrected through pressure calculations according to the SIMPLE algorithm. For verification purposes, the obtained numerical results are compared with available experimental data. A comparison of numerical results has shown that the two-fluid model is easy to implement, requires less computational resources and is capable of predicting laminar and turbulent flows with high accuracy.
Keywords: Navier-Stokes equations, separated flow, two-fluid model, finite volume method.
@article{VTGU_2023_82_a9,
     author = {M. E. Madaliev},
     title = {Numerical simulation of turbulent flows on the basis of a two-fluid model of turbulence},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {120--140},
     year = {2023},
     number = {82},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_82_a9/}
}
TY  - JOUR
AU  - M. E. Madaliev
TI  - Numerical simulation of turbulent flows on the basis of a two-fluid model of turbulence
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 120
EP  - 140
IS  - 82
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_82_a9/
LA  - ru
ID  - VTGU_2023_82_a9
ER  - 
%0 Journal Article
%A M. E. Madaliev
%T Numerical simulation of turbulent flows on the basis of a two-fluid model of turbulence
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 120-140
%N 82
%U http://geodesic.mathdoc.fr/item/VTGU_2023_82_a9/
%G ru
%F VTGU_2023_82_a9
M. E. Madaliev. Numerical simulation of turbulent flows on the basis of a two-fluid model of turbulence. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 120-140. http://geodesic.mathdoc.fr/item/VTGU_2023_82_a9/

[1] F. X. Trias, A. Gorobets, A. Oliva, “Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study”, Computers Fluids, 123 (2015), 87–98 | DOI | MR | Zbl

[2] D. Bouris, G. Bergeles, “2D LES of vortex shedding from a square cylinder”, Journal of Wind Engineering and Industrial Aerodynamics, 80 (1999), 31–46 | DOI

[3] Y. Cao, T. Tamura, “Large-eddy simulations of flow past a square cylinder using structured and unstructured grids”, Computers Fluids, 137 (2016), 36–54 | DOI | MR | Zbl

[4] A. M. Kagenov, K. V. Kostyushin, K. L. Aligasanova, V. A. Kotonogov, “Matematicheskoe modelirovanie vzaimodeistviya sostavnoi sverkhzvukovoi strui s pregradoi”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 68, 72–79 | DOI

[5] A. A. Glazunov, I. V. Eremin, K. N. Zhiltsov, K. V. Kostyushin, I. M. Tyryshkin, V. A. Shuvarikov, “Chislennoe issledovanie opredeleniya velichin pulsatsii davleniya i sobstvennykh akusticheskikh chastot v kamerakh sgoraniya s napolnitelem slozhnoi formy”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 53, 59–72 | DOI

[6] V. I. Bimatov, N. V. Savkina, V. V. Faraponov, “Sverkhzvukovoe obtekanie i aerodinamicheskie kharakteristiki ostrogo konusa dlya razlichnykh modelei turbulentnoi vyazkosti”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2016, no. 5 (43), 35–42 | DOI

[7] R. R. Turubaev, A. V. Shvab, “Chislennoe issledovanie aerodinamiki zakruchennogo turbulentnogo techeniya i protsessa klassifikatsii chastits v vikhrevoi kamere tsentrobezhnogo apparata”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 65, 137–147 | DOI | MR

[8] Z. M. Malikov, M. E. Madaliev, “Chislennoe issledovanie zakruchennogo turbulentnogo techeniya v kanale s vnezapnym rasshireniem”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 72, 93–101 | DOI

[9] D. B. Spalding, “Chemical reaction in turbulent fluids”, J. Physico-chemical Hydrodyn, 4 (1983), 323–336

[10] D. B. Spalding, “A turbulence model for buoyant and combusting flows”, 4th Int. Conf. on Numerical methods in Thermal Problems (Swansea, 15-18 July 1984)

[11] Z. Malikov, “Mathematical Model of Turbulence Based on the Dynamics of Two Fluids”, Applied Mathematic Modeling, 82 (2020), 409–436 | DOI | Zbl

[12] Z. M. Malikov, M. E. Madaliev, “Numerical Simulation of Two-Phase Flow in a Centrifugal Separator”, Fluid Dynamics, 55:8 (2020), 1012–1028 | DOI | MR

[13] Z. M. Malikov, “Mathematical model of turbulent heat transfer based on the dynamics of two fluids”, Applied Mathematic Modeling, 91 (2021), 186–213 | DOI | Zbl

[14] Z. M. Malikov, M. E. Madaliev, “Numerical simulation of flow in a two-dimensional flat diffuser based on two fluid turbulence models”, Computer Research and Modeling, 13:6 (2021), 1115–1126 | DOI

[15] B. A. Younis, V. P. Przulj, “Computation of turbulent vortex shedding”, Comput Mech, 37 (2006), 408–425 | DOI | Zbl

[16] W. Rodi, “Comparison of LES and RANS calculations of the flow around bluff bodies”, Journal of Wind Engineering and Industrial Aerodynamics, 69-71 (1997), 55–75 | DOI

[17] W. Rodi, “On the simulation of turbulent flow past bluff bodies”, Journal of Wind Engineering and Industrial Aerodynamics, 46-47 (1993), 3–19 | DOI

[18] G. Bosch, W. Rodi, “Simulation of vortex a shedding past a square cylinder with different turbulence models”, International Journal for Numerical Methods in Fluids, 28 (1998), 601–616 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[19] D. A. Lyn, S. Einav, W. Rodi, J. H. Park, “A laser-Doppler velocimetry study of ensembleaveraged characteristics of the turbulent near wake of a square cylinder”, Journal of Fluid Mechanics, 304 (1995), 285–319 | DOI

[20] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington–New York–London, 1980 | Zbl

[21] M. E. Madaliev, “Numerical Calculation of an Air Centrifugal Separator Based on the SARC Turbulence Model”, J. Appl. Comput. Mech., 6, SI (2020), 1133–1140 | DOI

[22] H. Blasius, “Laminare Stromung in Kanalen Wecselnder Briete”, Zeitschrift filer Mathematik und Physik, 10 (1910), 225–223

[23] M. A. Kopera, Direct Numerical Simulation of Turbulent Flow over a Backward-Facing Step, Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy School of Engineering, March 2011

[24] B. F. Armaly, F. Durst, J. C.F. Pereira, B. Schonung, “Experimental and theoretical investigation of backward-facing step flow”, J. Fluid Mech, 127 (1983), 473–496 | DOI

[25] Z. M. Malikov, M. E. Madaliev, “Chislennoe modelirovanie techeniya v ploskom vnezapno rasshiryayuschemsya kanale na osnove novoi dvuzhidkostnoi modeli turbulentnosti”, Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser. Estestvennye nauki, 2021, no. 4 (97), 24–39

[26] R. Cristopher, Turbulence modeling Resource, NASA Langley Research Center (04.04.2019) http://turbmodels.larc.nasa.gov

[27] T. Lund, X. Wu, Squires, K., “Generation of turbulent inflow data for spatially-developing boundary layer simulations”, Journal of Computational Physics, 140:2 (1998), 233–258 | DOI | MR | Zbl

[28] R. R. Turubaev, A. V. Shvab, “Chislennoe issledovanie aerodinamiki zakruchennogo potoka v vikhrevoi kamere kombinirovannogo pnevmaticheskogo apparata”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2017, no. 47, 87–98 | DOI | MR