Passive convective ventilation in a double air-porous layer with internal heat generation depending on solid fraction
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 108-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convective stability of a two-layered system consisting of a heat-generating porous region underlying an air region has been numerically studied. The linear dependence of the heat release on the solid volume fraction is taken into account in the porous region. The equal constant temperature values are fixed on the external impermeable boundaries of the system. The critical internal Rayleigh-Darcy number at which the convection is induced in the system in the form of two-dimensional roll patterns with a given wave number has been determined. The convective flow is possible due to the formation of unstable density stratification in the presence of internal heat release. Two types of stationary convection, namely, the local and the large-scale convection, have been studied. The local flow arises in the air sublayer and scarcely penetrates into the porous sublayer. The large-scale convection covers both sublayers. The change in the convective regime occurs with the growth of one or another parameter of the system and indicates the variation of the instability type. It is accompanied by an abrupt (by times and tens of times) change in the critical wave number of roll patterns. Numerical calculations show a decrease in the onset value for both types of convection with increasing solid volume fraction $\phi$ in the porous sublayer and increasing relative thickness d of the air sublayer. The growth of the Darcy number (the dimensionless permeability of the porous sublayer) also causes destabilization of the air motionless state at the given $\phi$ and $d$. The variation of the convection regime from a large-scale flow to a local one occurs with increasing relative thickness of the air sublayer, whereas an opposite transition from the local to the large-scale convection regime is observed with increasing Darcy number.
Keywords: internal heat release, two-layered system, local and large-scale convection, porous medium, effect of the Darcy number.
Mots-clés : solid fraction, passive air ventilation
@article{VTGU_2023_82_a8,
     author = {E. A. Kolchanova and N. V. Kolchanova},
     title = {Passive convective ventilation in a double air-porous layer with internal heat generation depending on solid fraction},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {108--119},
     year = {2023},
     number = {82},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_82_a8/}
}
TY  - JOUR
AU  - E. A. Kolchanova
AU  - N. V. Kolchanova
TI  - Passive convective ventilation in a double air-porous layer with internal heat generation depending on solid fraction
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 108
EP  - 119
IS  - 82
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_82_a8/
LA  - ru
ID  - VTGU_2023_82_a8
ER  - 
%0 Journal Article
%A E. A. Kolchanova
%A N. V. Kolchanova
%T Passive convective ventilation in a double air-porous layer with internal heat generation depending on solid fraction
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 108-119
%N 82
%U http://geodesic.mathdoc.fr/item/VTGU_2023_82_a8/
%G ru
%F VTGU_2023_82_a8
E. A. Kolchanova; N. V. Kolchanova. Passive convective ventilation in a double air-porous layer with internal heat generation depending on solid fraction. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 108-119. http://geodesic.mathdoc.fr/item/VTGU_2023_82_a8/

[1] T. P. Lyubimova, I. D. Muratov, “Interaction of the longwave and finite-wavelength instability modes of convection in a horizontal fluid layer confined between two fluid-saturated porous layers”, Fluids, 2:3 (2017), 39 | DOI

[2] E. Kolchanova, D. Lyubimov, T. Lyubimova, “The onset and nonlinear regimes of convection in a two-layer system of fluid and porous medium saturated by the fluid”, Transport in Porous Media, 97 (2013), 25–42 | DOI | MR

[3] M. Mccurdy, N. Moore, X. Wang, “Convection in a coupled free flow-porous media system”, SIAM Journal on Applied Mathematics, 79 (2019), 2313–2339 | DOI | MR | Zbl

[4] M. Ait saada, S. Chikh, A. Campo, “Natural Convection Reduction in a Composite Air/Porous Annular Region With Horizontal Orientation”, Journal of Heat Transfer, 131 (2009), 022601 | DOI

[5] F. Kulacki, R. Ramchandani, “Hydrodynamic instability in a porous layer saturated with a heat generating fluid”, Warme und Stoffubertragung-Thermo and Fluid Dynamics, 8 (1975), 179–185 | DOI

[6] A. Nouri-Borujerdi, A. R. Noghrehabadi, D. A.S. Rees, “Influence of Darcy number on the onset of convection in a porous layer with a uniform heat source”, International Journal of Thermal Sciences, 47 (2008), 1020–1025 | DOI

[7] A. V. Kuznetsov, D. A. Nield, “The effect of strong heterogeneity on the onset of convection induced by internal heating in a porous medium: A layered model”, Transport in Porous Media, 99 (2013), 85–100 | DOI | MR

[8] S. Shalbaf, A. Noghrehabadi, M. R. Assari, A. D. Dezfuli, “Linear stability of natural convection in a multilayer system of fluid and porous layers with internal heat sources”, Acta Mechanica, 224 (2013), 1103–1114 | DOI | MR | Zbl

[9] K. M. Lisboa, J. Su, R. M. Cotta, “Single domain integral transform analysis of natural convection in cavities partially filled with heat generating porous medium”, Numerical Heat Transfer. Part A, 2018 | DOI

[10] G. Z. Gershuni, E. M. Zhukhovitskii, Konvektivnaya ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972, 392 pp.

[11] D. A. Nield, A. Bejan, Convection in porous media, Springer, Switzerland, 2017, 988 pp. | Zbl

[12] N. I. Lobov, D. V. Lyubimov, T. P. Lyubimova, Chislennye metody resheniya zadach teorii gidrodinamicheskoi ustoichivosti, ucheb. posobie, Izd-vo PGU, Perm, 2004, 101 pp.

[13] I. V. Altukhov, V. D. Ochirov, “Teplofizicheskie kharakteristiki kak osnova rascheta postoyannoi vremeni nagreva sakharosoderzhaschikh korneplodov v protsessakh teplovoi obrabotki”, Vestnik KrasGAU, 2010, no. 4, 134–139

[14] P. C. Carman, “Fluid flow through granular beds”, Transactions of the Institution of Chemical Engineers, 15 (1937), S32–S48 | DOI