A thermal state of a small satellite at various packing density of electronic circuit boards
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 66-81
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To reduce the cost of CubeSat satellites, an industrial level of performance for radio-electronic components designed for ground operations is applied. A specific temperature range should be maintained for such electronic components to operate under space flight conditions. Since the CubeSat spacecraft does not have an active temperature regulation system, the thermal conditions are determined by the balance between inactive absorbed and radiated energy flows, including internal heat release. This paper considers the effect of heat release from circuit boards of different packing density in the electronic equipment on the 1U CubeSat thermal conditions. Both the absorbed radiation from external sources, the radiation from the CubeSat external surfaces, the inner heat release, and the re-radiation between the surfaces within the spacecraft are taken into account. The formulated problem is solved numerically. The results show the effect of circuit board packing density on the amplitudes of temperature oscillations and on the average temperatures of satellite structural elements.
Mots-clés : CubeSat, thermal conditions
Keywords: spacecraft, radiation, form factor.
@article{VTGU_2023_82_a5,
     author = {S. V. Belov and A. V. Bel'kov and A. P. Zhukov and M. S. Pavlov and S. V. Ponomarev},
     title = {A thermal state of a small satellite at various packing density of electronic circuit boards},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {66--81},
     year = {2023},
     number = {82},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_82_a5/}
}
TY  - JOUR
AU  - S. V. Belov
AU  - A. V. Bel'kov
AU  - A. P. Zhukov
AU  - M. S. Pavlov
AU  - S. V. Ponomarev
TI  - A thermal state of a small satellite at various packing density of electronic circuit boards
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 66
EP  - 81
IS  - 82
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_82_a5/
LA  - ru
ID  - VTGU_2023_82_a5
ER  - 
%0 Journal Article
%A S. V. Belov
%A A. V. Bel'kov
%A A. P. Zhukov
%A M. S. Pavlov
%A S. V. Ponomarev
%T A thermal state of a small satellite at various packing density of electronic circuit boards
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 66-81
%N 82
%U http://geodesic.mathdoc.fr/item/VTGU_2023_82_a5/
%G ru
%F VTGU_2023_82_a5
S. V. Belov; A. V. Bel'kov; A. P. Zhukov; M. S. Pavlov; S. V. Ponomarev. A thermal state of a small satellite at various packing density of electronic circuit boards. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 66-81. http://geodesic.mathdoc.fr/item/VTGU_2023_82_a5/

[1] CubeSat Design Specification Review 14.1. The CubeSat Program. Cal Poly SLO, 2022, 34 pp. (accessed: 07.09.2022) https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf

[2] N. Saeed, A. Elzanaty, H. Almorad, H. Dahrouj, T. Y. Al-Naffouri, M-S. Alouini, “CubeSat Communications: Recent Advances and Future Challenges”, IEEE Communications Surveys Tutorials, 22:3 (2020), 1839–1862 | DOI

[3] I. N. Gansvind, “Malye kosmicheskie apparaty v distantsionnom zondirovanii Zemli”, Issledovanii Zemli iz kosmosa, 2019, no. 5, 82–88 | DOI

[4] N. V. Vakhrushev, I. N. Pyankov, M. N. Ryazanov, “Obzor form-faktora sputnikov CubeSat”, Studencheskaya nauka XXI veka, 2016, no. 3 (10), 100–106

[5] M. R. Padgen, T. N. Chinn, C. R. Friedericks, M. P. Lera, M. Chin, M. P. Parra, M. E. Piccini, A. J. Ricco, S. Spremo, “The EcAMSat fluidic system to study antibiotic resistance in low Earth orbit: Development and lessons learned from space flight”, Acta Astronautica, 173 (2020), 449–459 | DOI

[6] P. Kovar, M. Sommer, D. Matthiae, G. Reitz, “Measurement of cosmic radiation in LEO by 1U CubeSat”, Radiation Measurements, 139 (2020), 106471 | DOI

[7] J. R. Olatunji, C. Acheson, M. Szmigiel, S. C. Wimbush, N. J. Long, “Orbital and thermal modelling of a 3U CubeSat equipped with a high-temperature superconducting coil”, Acta Astronautica, 190 (2022), 413–429 | DOI

[8] K. Ikeya, H. Sakamoto, H. Nakanishi, H. Furuya, T. Tomura, R. Ide, R. Iijima, Y. Iwasaki, K. Ohno, K. Omoto, E. Furuya, T. Hayashi, M. Kato, S. Koide, M. Kurosaki, Y. Nakatsuka, S. Okuyama, R. Kashiyama, J. Nakamura, W. Nio, T. Tsunemitsu, Y. Yamazaki, K. Taga, B. Hohmann, T. Amamoto, T. Chubachi, S. Tamura, H. Okada, A. Watanabe, N. Kawabata, T. Hori, H. Ito, T. Kuratomi, Y. Shimoda, N. Hidaka, K. Watanabe, A. Torisaka, M. Yamazaki, “Significance of 3U CubeSat OrigamiSat-1 for space demonstration of multifunctional deployable membrane”, Acta Astronautica, 173 (2020), 363–377 | DOI

[9] P. Marzioli, L. Gugliermetti, F. Santoni, A. Delfini, F. Nardi L. Piergentili, G. Metelli, E. Benvenuto, S. Massa, E. Bennici, “CultCube: Experiments in autonomous in-orbit cultivation onboard a 12-units CubeSat platform”, Life Sciences in Space Research, 25 (2020), 42–52 | DOI

[10] I. F. Akyildiz, J. M. Jornet, S. Nie, “A new CubeSat design with reconfigurable multi-band radios for dynamic spectrum satellite communication networks”, Ad Hoc Networks, 86 (2019), 166–178 | DOI

[11] J. Liu, P. Zhao, C. Wu, K. Chen, W. Ren, L. Liu, Y. Tang, C. Ji, X. Sang, “SIASAIL-I solar sail: From system design to on-orbit demonstration mission”, Acta Astronautica, 192 (2022), 133–142 | DOI

[12] H. Hakima, M. C.F. Bazzocchi, “Cubesat with dual robotic manipulators for debris mitigation and remediation”, 5th IAA Conference on University Satellite Missions and Cubesat Workshop (Rome, Italy, 28 January–31 January 2020), Advances in the Astronautical Sciences, 173, 2020, 149–162

[13] I. V. Belokonov, I. A. Timbai, E. V. Barinova, “Vybor proektnykh parametrov nanosputnika formata CubeSat s passivnoi sistemoi stabilizatsii”, Giroskopiya i navigatsiya, 28:1 (108) (2020), 81–100 | DOI

[14] Nanosputnikovaya platforma CubeSat “OrbiCraft-Pro”, M., 2019 (data obrascheniya: 07.09.2022) https://sputnix.ru/tpl/docs/Opisanie

[15] A. Rathinam, Design and Development of UWE-4: Integration of Electric Propulsion Units, Structural Analysis and Orbital Heating Analysis, Thesis for Master of Science Degree, Lisboa, 2019 | DOI

[16] L. A. Reyesa, R. Cabriales-Gomez, C. E. Chavez, B. Bermudez-Reyes, O. Lopez-Botello, P. Zambrano-Robledo, “Thermal modeling of CIIIASat nanosatellite: A tool for thermal barrier coating selection”, Applied Thermal Engineering, 166 (2020), 114651 | DOI

[17] A. Cervone, F. Topputo, S. Speretta, A. Menicucci, E. Turan, P. Di Lizia, M. Massari, V. Franzese, C. Giordano, G. Merisio, D. Labate, G. Pilato, E. Costa, E. Bertels, A. Thorvaldsen, A. Kukharenka, J. Vennekens, R. Walker, “LUMIO: A CubeSat for observing and characterizing micro-meteoroid impacts on the lunar far side”, Acta Astronautica, 195 (2022), 309–317 | DOI

[18] M. B.V. Guedes, Cubesat Structural and Thermal Analysis Methodology ISTsat-1 Design, Thesis...Master of Science Degree in Aerospace Engineering, Lisboa, 2019

[19] F. Santoni, F. Piergentili, S. Donati, M. Perelli, A. Negri, M. Marino, “An innovative deployable solar panel system for cubesats”, Acta Astronautica, 95:1 (2014), 210–217 | DOI

[20] I. F. Akyildiz, J. M. Jornet, S. Nie, “A new CubeSat design with reconfigurable multi-band radios for dynamic spectrum satellite communication networks”, Ad Hoc Networks, 86 (2003), 166–178 | DOI

[21] PC/104 Pluse Specification v. 2.0., 2003, 28 pp. (accessed: 07.09.2022) https://resources.winsystems.com/specs/PC104PlusSpec.pdf

[22] V. M. Chmyrev, B. F. Nesterov, Vozmozhnosti i kompetentsii po sozdaniyu rossiiskoi gruppirovki nanosputnikov standarta CubeSat, AO «Tekhnologii GEOSKAN», 2018 (data obrascheniya: 07.09.2022) http://spaceresearch.ssau.ru/sites/all/themes/venture_theme/Concor/7.pdf

[23] Kh. Uong, Osnovnye formuly i dannye po teploobmenu dlya inzhenerov, Atomizdat, M., 1979, 216 pp.

[24] A. R. Hajji, M. Mirhosseini, A. Moosavi A. Saboonchi, “Different Methods for Calculating a View Factor in Radiative Applications: Strip to In-Pane Parallel Semi-Cylinder”, Journal of Engineering Thermophysics, 24:2 (2015), 169–180 | DOI

[25] F. E. Morsch, L. O. Seman, V. Nicolau, “Simulation of a CubeSat with internal heat transfer using finite volume method”, Applied Thermal Engineering, 193 (2021), 117039 | DOI

[26] F. E. Morsch, V. Nicolau, K. Paiva, T. Possamai, “A comprehensive attitude formulation with spin for numerical model of irradiance for CubeSats and Picosats”, Applied Thermal Engineering, 168 (2019), 114859 | DOI

[27] S. F.C. Aboobakar, Dynamic and Thermal Models for ECOSat-III, Thesis... Master of Science Degree in Aerospace Engineering, Lisboa, 2016

[28] S. Corpino, M. Caldera, F. Nichele, M. Masoero, N. Viola, “Thermal design and analysis of a nanosatellite in low Earth orbit”, Acta Astronautica, 115 (2015), 247–261 | DOI