Dynamics of a micromechanical dual-mass gyroscope of $RL$-type in a free oscillation mode
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 55-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents the analysis of a mechanical and theoretical model of a micromechanical $RL$-type gyroscope (MMG). The behavior of the resonator in a free oscillation mode is studied by solving the problem in a linear formulation. The main part of the paper is devoted to the mathematical model development for a dual-mass MMG with a disk-shaped resonator, which is fixed on the elastic leg on a movable base. The important condition of the problem implies the arbitrary angular velocity of the base $\Omega$. The derived equations are analyzed in terms of orbital coordinates $(r, k, \theta, \chi)$. The equations determining the precession angle $(\theta)$ of the considered gyroscope are obtained. A brief analysis of the proposed dependences and the corresponding conclusions about the behavior of the system under free oscillations are presented.
Keywords: micromechanical gyroscope, free oscillations, precession angle, tuning fork.
@article{VTGU_2023_82_a4,
     author = {E. A. Antonov and O. V. Gribova},
     title = {Dynamics of a micromechanical dual-mass gyroscope of $RL$-type in a free oscillation mode},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {55--65},
     year = {2023},
     number = {82},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_82_a4/}
}
TY  - JOUR
AU  - E. A. Antonov
AU  - O. V. Gribova
TI  - Dynamics of a micromechanical dual-mass gyroscope of $RL$-type in a free oscillation mode
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 55
EP  - 65
IS  - 82
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_82_a4/
LA  - ru
ID  - VTGU_2023_82_a4
ER  - 
%0 Journal Article
%A E. A. Antonov
%A O. V. Gribova
%T Dynamics of a micromechanical dual-mass gyroscope of $RL$-type in a free oscillation mode
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 55-65
%N 82
%U http://geodesic.mathdoc.fr/item/VTGU_2023_82_a4/
%G ru
%F VTGU_2023_82_a4
E. A. Antonov; O. V. Gribova. Dynamics of a micromechanical dual-mass gyroscope of $RL$-type in a free oscillation mode. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 55-65. http://geodesic.mathdoc.fr/item/VTGU_2023_82_a4/

[1] V. V. Matveev, V. Ya. Raspopov, Pribory i sistemy orientatsii, stabilizatsii i navigatsii na MEMS-datchikakh, Izd-vo TulGU, Tula, 2017, 225 pp.

[2] A. Z. Mammadov, “The model of inertial navigation system on base of mems sensors for unmanned aerial vehicles”, Kronos, 2019, no. 10 (37), 24–29

[3] V. V. Matveev, M. G. Pogorelov, “Analiz pogreshnostei mikromekhanicheskikh giroskopov metodom variatsii Allana”, Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2015, no. 3, 123–135

[4] E. A. Baranova, M. I. Evstifeev, D. H. Eliseev, “Simulation of Translational Vibrations Effect on Torque-to-Balance RR-Type MEMS Gyroscope”, Gyroscopy and Navigation, 9:1 (2018), 50–56 | DOI

[5] V. F. Zhuravlev, “Upravlyaemyi mayatnik Fuko kak model odnogo klassa svobodnykh giroskopov”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 1997, no. 6, 27–35

[6] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 503 pp.

[7] I. V. Merkurev, V. V. Podalkov, Dinamika mikromekhanicheskogo i volnovogo tverdotelnogo giroskopov, Fizmatlit, M., 2009, 228 pp.