Investigation of an approximate solution of the integral
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 39-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The substantiation of the collocation method for the integral equation of the external Dirichlet boundary value problem for the Helmholtz equation in two-dimensional space is given. A new method for constructing a quadrature formula for the potentials of the simple and double layers is proposed, which makes it possible to determine the rate of convergence of these quadrature formulas, on the basis of which the considered integral equation is replaced by a system of algebraic equations, while establishing the existence and uniqueness of a solution to this system. The convergence of the solution of the system of algebraic equations to the value of the exact solution of the integral equation at the reference points is proved, and the rate of convergence of the method is indicated. In addition, a sequence is constructed that converges to an exact solution of the exterior Dirichlet boundary value problem for the Helmholtz equation in two-dimensional space.
Keywords: exterior Dirichlet boundary value problem, Helmholtz equation, potentials of simple and double layers, Hankel function, collocation method.
Mots-clés : quadrature formulas
@article{VTGU_2023_82_a3,
     author = {E. H. Khalilov},
     title = {Investigation of an approximate solution of the integral},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {39--54},
     year = {2023},
     number = {82},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_82_a3/}
}
TY  - JOUR
AU  - E. H. Khalilov
TI  - Investigation of an approximate solution of the integral
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 39
EP  - 54
IS  - 82
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_82_a3/
LA  - ru
ID  - VTGU_2023_82_a3
ER  - 
%0 Journal Article
%A E. H. Khalilov
%T Investigation of an approximate solution of the integral
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 39-54
%N 82
%U http://geodesic.mathdoc.fr/item/VTGU_2023_82_a3/
%G ru
%F VTGU_2023_82_a3
E. H. Khalilov. Investigation of an approximate solution of the integral. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 39-54. http://geodesic.mathdoc.fr/item/VTGU_2023_82_a3/

[1] D. Kolton, R. Kress, Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987, 311 pp.

[2] O. I. Panich, “K voprosu o razreshimosti vneshnikh kraevykh zadach dlya volnovogo uravneniya i dlya sistemy uravnenii Maksvella”, Uspekhi matematicheskikh nauk, 20:1 (1965), 221–226 | MR | Zbl

[3] H. Brakhage, P. Werner, “Uber das Dirichletsche Aussenraumproblem fur die Helmholtzsche Schwingungsgleichung”, Archiv der Mathematik, 16 (1965), 325–329 | DOI | MR | Zbl

[4] R. Leis, “Zur Dirichletschen Randwertaufgabe des Aussenraums der Schwingungsgleichung”, Mathematische Zeitschrift, 90 (1965), 205–211 | DOI | MR | Zbl

[5] A. A. Kashirin, S. I. Smagin, “O chislennom reshenii zadach Dirikhle dlya uravneniya Gelmgoltsa metodom potentsialov”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 52:8 (2012), 1492–1505 | MR | Zbl

[6] A. A. Kashirin, S. I. Smagin, M. Yu. Taltykina, “Primenenie mozaichno-skeletonnogo metoda pri chislennom reshenii trekhmernykh zadach Dirikhle dlya uravneniya Gelmgoltsa v integralnoi forme”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 56:4 (2016), 625–638 | DOI | MR | Zbl

[7] E. G. Khalilov, “Obosnovanie metoda kollokatsii dlya odnogo klassa poverkhnostnykh integralnykh uravnenii”, Matematicheskie zametki, 107:4 (2020), 604–622 | DOI | Zbl

[8] E. G. Khalilov, “Issledovanie priblizhennogo resheniya nekotorykh klassov poverkhnostnykh integralnykh uravnenii pervogo roda”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 74, 43–54 | Zbl

[9] M. N. Bakhshalyeva, E. G. Khalilov, “Obosnovanie metoda kollokatsii dlya integralnogo uravneniya vneshnei kraevoi zadachi Dirikhle dlya uravneniya Laplasa”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 61:6 (2021), 936–950 | DOI | Zbl

[10] E. G. Khalilov, M. N. Bakhshalyeva, “Issledovanie priblizhennogo resheniya integralnogo uravneniya, sootvetstvuyuschego smeshannoi kraevoi zadache dlya uravneniya Laplasa”, Ufimskii matematicheskii zhurnal, 13:1 (2021), 86–98 | Zbl

[11] C. Turc, Y. Boubendir, M. K. Riahi, “Well-conditioned boundary integral equation formulations and Nystrom discretizations for the solution of Helmholtz problems with impedance boundary conditions in two-dimensional Lipschitz domains”, Journal Integral Equations Applications, 29:3 (2017), 441–472 | DOI | MR | Zbl

[12] O. I. Yaman, G. Ozdemir, “Numerical solution of a generalized boundary value problem for the modified Helmholtz equation in two dimensions”, Mathematics and Computers in Simulation, 190 (2021), 181–191 | DOI | MR

[13] R. Kress, “Boundary integral equations in time-harmonic acoustic scattering”, Mathematical and Computer Modeling, 15:3–5 (1991), 229–243 | DOI | Zbl

[14] N. I. Muskheleshvili, Singulyarnye integralnye uravneniya, Fiz. mat. lit., M., 1962, 599 pp.

[15] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1976, 527 pp.

[16] G. M. Vainikko, “Regulyarnaya skhodimost operatorov i priblizhennoe reshenie uravnenii”, Itogi nauki i tekhniki. Matematicheskii analiz, 16, 1979, 5–53