Mots-clés : quadrature formulas
@article{VTGU_2023_82_a3,
author = {E. H. Khalilov},
title = {Investigation of an approximate solution of the integral},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {39--54},
year = {2023},
number = {82},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_82_a3/}
}
E. H. Khalilov. Investigation of an approximate solution of the integral. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 39-54. http://geodesic.mathdoc.fr/item/VTGU_2023_82_a3/
[1] D. Kolton, R. Kress, Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987, 311 pp.
[2] O. I. Panich, “K voprosu o razreshimosti vneshnikh kraevykh zadach dlya volnovogo uravneniya i dlya sistemy uravnenii Maksvella”, Uspekhi matematicheskikh nauk, 20:1 (1965), 221–226 | MR | Zbl
[3] H. Brakhage, P. Werner, “Uber das Dirichletsche Aussenraumproblem fur die Helmholtzsche Schwingungsgleichung”, Archiv der Mathematik, 16 (1965), 325–329 | DOI | MR | Zbl
[4] R. Leis, “Zur Dirichletschen Randwertaufgabe des Aussenraums der Schwingungsgleichung”, Mathematische Zeitschrift, 90 (1965), 205–211 | DOI | MR | Zbl
[5] A. A. Kashirin, S. I. Smagin, “O chislennom reshenii zadach Dirikhle dlya uravneniya Gelmgoltsa metodom potentsialov”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 52:8 (2012), 1492–1505 | MR | Zbl
[6] A. A. Kashirin, S. I. Smagin, M. Yu. Taltykina, “Primenenie mozaichno-skeletonnogo metoda pri chislennom reshenii trekhmernykh zadach Dirikhle dlya uravneniya Gelmgoltsa v integralnoi forme”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 56:4 (2016), 625–638 | DOI | MR | Zbl
[7] E. G. Khalilov, “Obosnovanie metoda kollokatsii dlya odnogo klassa poverkhnostnykh integralnykh uravnenii”, Matematicheskie zametki, 107:4 (2020), 604–622 | DOI | Zbl
[8] E. G. Khalilov, “Issledovanie priblizhennogo resheniya nekotorykh klassov poverkhnostnykh integralnykh uravnenii pervogo roda”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 74, 43–54 | Zbl
[9] M. N. Bakhshalyeva, E. G. Khalilov, “Obosnovanie metoda kollokatsii dlya integralnogo uravneniya vneshnei kraevoi zadachi Dirikhle dlya uravneniya Laplasa”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 61:6 (2021), 936–950 | DOI | Zbl
[10] E. G. Khalilov, M. N. Bakhshalyeva, “Issledovanie priblizhennogo resheniya integralnogo uravneniya, sootvetstvuyuschego smeshannoi kraevoi zadache dlya uravneniya Laplasa”, Ufimskii matematicheskii zhurnal, 13:1 (2021), 86–98 | Zbl
[11] C. Turc, Y. Boubendir, M. K. Riahi, “Well-conditioned boundary integral equation formulations and Nystrom discretizations for the solution of Helmholtz problems with impedance boundary conditions in two-dimensional Lipschitz domains”, Journal Integral Equations Applications, 29:3 (2017), 441–472 | DOI | MR | Zbl
[12] O. I. Yaman, G. Ozdemir, “Numerical solution of a generalized boundary value problem for the modified Helmholtz equation in two dimensions”, Mathematics and Computers in Simulation, 190 (2021), 181–191 | DOI | MR
[13] R. Kress, “Boundary integral equations in time-harmonic acoustic scattering”, Mathematical and Computer Modeling, 15:3–5 (1991), 229–243 | DOI | Zbl
[14] N. I. Muskheleshvili, Singulyarnye integralnye uravneniya, Fiz. mat. lit., M., 1962, 599 pp.
[15] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1976, 527 pp.
[16] G. M. Vainikko, “Regulyarnaya skhodimost operatorov i priblizhennoe reshenie uravnenii”, Itogi nauki i tekhniki. Matematicheskii analiz, 16, 1979, 5–53