Solution of the parameter problem of the Schwarz–Christoffel conformal mapping of the interior (exterior) of a circle onto the interior (exterior) of a polygon
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 28-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose an analytical solution of the parameter problem of the Schwarz–Christoffel conformal mapping of the interior (exterior) of a circle onto the interior (exterior) of a polygon by use of the behavior of the Newtonian simple layer and logarithmic potentials equal to a constant inside of a simply connected domain.
Keywords: conformal mapping, Schwarz–Christoffel parameter problem, potential method.
@article{VTGU_2023_82_a2,
     author = {N. A. Trubaev},
     title = {Solution of the parameter problem of the {Schwarz{\textendash}Christoffel} conformal mapping of the interior (exterior) of a circle onto the interior (exterior) of a polygon},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {28--38},
     year = {2023},
     number = {82},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_82_a2/}
}
TY  - JOUR
AU  - N. A. Trubaev
TI  - Solution of the parameter problem of the Schwarz–Christoffel conformal mapping of the interior (exterior) of a circle onto the interior (exterior) of a polygon
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 28
EP  - 38
IS  - 82
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_82_a2/
LA  - en
ID  - VTGU_2023_82_a2
ER  - 
%0 Journal Article
%A N. A. Trubaev
%T Solution of the parameter problem of the Schwarz–Christoffel conformal mapping of the interior (exterior) of a circle onto the interior (exterior) of a polygon
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 28-38
%N 82
%U http://geodesic.mathdoc.fr/item/VTGU_2023_82_a2/
%G en
%F VTGU_2023_82_a2
N. A. Trubaev. Solution of the parameter problem of the Schwarz–Christoffel conformal mapping of the interior (exterior) of a circle onto the interior (exterior) of a polygon. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 28-38. http://geodesic.mathdoc.fr/item/VTGU_2023_82_a2/

[1] N. M. Gyunter, Potential Theory and Its Application to Basic Problems of Mathematical Physics, State Publishing House of technical and theoretical literature, M., 1953

[2] L. N. Sretenskii, Theory of the Newtonian potential, State Publishing House of technical and theoretical literature, M., 1946

[3] W. Koppenfelds, F. Stallmann, Praxis der Konformen Abbildung, Springer-Verlag, Berlin, 1959

[4] P. F. Fil'chakov, Approximate methods of conformal mappings, Naukova dumka, Kiev, 1964

[5] M. A. Lavrent'ev, B. V. Shabat, Methods of the theory of functions of complex variable, Nauka, M., 1973

[6] V. I. Ivanov, V. Yu. Popov, Conformal mapping and their applications, URSS, M., 2002

[7] T. A. Driscoll, L. N. Trefethen, Schwarz-Christoffel Mapping, Cambridge University Press, Cambridge, 2002 | Zbl

[8] S. Zhambaa, T. V. Kasatkina, A. M. Bubenchikov, “Determination of the constants in the Christoffel-Schwarz integral by P.P. Kufarev's method”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 5 (2016), 21–27

[9] S. Zhambaa, Numerical implementation of P. P. Kufarev method for determination of the constants in Schwarz-Christoffel integral, Dissertation, Tomsk State University, 2018 | Zbl

[10] F. G. Avkhadiev, Conformal mappings and boundary-value problems, Kazan Federal University, Kazan, 2019

[11] N. A. Trubaev, “The numerical solving of one inverse problem of the theory of the Newtonian potential”, Modern Science, 1:1 (2021), 335–344

[12] N. A. Trubaev, “The behavior of solutions of the Dirichlet, Neumann and mixed Dirichlet Neumann problems in the vicinity of sharp edges of a piecewise smooth boundary”, Transactions of A, Razmadze Mathematical Institute, 173 (2019), 65–88 | MR | Zbl

[13] I. N. Bronshtein, K. A. Semendyaev, Handbook of Mathematics, Nauka, M., 1986

[14] N. A. Trubaev, “The applications of the theory of the Newtonian potential”, Materials of the XXIX International Scientific and Practical Conference “Innovative Research As a Locomotive of the Development of Modern Science: from Theoretical Paradigms to Practice”, NITs MISI, M., 2020, 163–185

[15] N. A. Trubaev, “Solution of the parameter problem of Schwarz-Christoffel conformal mapping of interior (exterior) of a circle onto interior (exterior) of a polygon”, Proceedings of the N.I. Lobachevsky Mathematical Center, Materials of the Lobachevsky Readings International Conference, 62, Kazan Federal University, Kazan, 2022, 109–111

[16] A. M. Lyapunov, Works on potential theory, State Publishing House of technical and theoretical literature, M., 1949