Peculiarities of the flame formation
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 141-149
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents a numerical study of the features of propane-air mixture flame propagation in a narrow cylindrical channel. The main purpose of the study is to determine the effect of the channel width on the combustion characteristics of a propane-air mixture with a composition close to stoichiometric. The problem is formulated using the methods of reactive gas dynamics. The solution method is based on the Van Leer method for determining flows on the faces of computational cells. The peculiarities of the combustion front formation and its propagation along the channel are revealed and analyzed. The formation of the curved flame front is shown to have a cyclical nature. The visible flame velocity is obtained as a function of the channel radius. The proposed physical and mathematical model can be used to determine the thermal conditions of operating cylindrical burners.
Keywords: burning velocity, propane-air mixture, mathematical modeling.
@article{VTGU_2023_82_a10,
     author = {K. M. Moiseeva and A. I. Kantarbaeva and A. Yu. Krainov},
     title = {Peculiarities of the flame formation},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {141--149},
     year = {2023},
     number = {82},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_82_a10/}
}
TY  - JOUR
AU  - K. M. Moiseeva
AU  - A. I. Kantarbaeva
AU  - A. Yu. Krainov
TI  - Peculiarities of the flame formation
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 141
EP  - 149
IS  - 82
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_82_a10/
LA  - ru
ID  - VTGU_2023_82_a10
ER  - 
%0 Journal Article
%A K. M. Moiseeva
%A A. I. Kantarbaeva
%A A. Yu. Krainov
%T Peculiarities of the flame formation
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 141-149
%N 82
%U http://geodesic.mathdoc.fr/item/VTGU_2023_82_a10/
%G ru
%F VTGU_2023_82_a10
K. M. Moiseeva; A. I. Kantarbaeva; A. Yu. Krainov. Peculiarities of the flame formation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 82 (2023), pp. 141-149. http://geodesic.mathdoc.fr/item/VTGU_2023_82_a10/

[1] M. F. Ivanov, A. D. Kiverin, I. S. Yakovenko, “Samopodderzhivaemyi rezhim uskoreniya plameni v kanale i mekhanizm formirovaniya detonatsii”, Inzhenernyi zhurnal: nauka i innovatsii, 2013, no. 8 (20), 1–15 | Zbl

[2] M. M. Alekseev, O. Yu. Semenov, “Fizicheskoe modelirovanie tyulpanoobraznogo plameni pri gorenii gazov v tsilindricheskoi vertikalnoi trube”, Vestnik kibernetiki, 2021, no. 1 (41), 63–70 | MR

[3] X. Shen, X. He, J. Sun, “A comparative study on premixed hydrogen-air and propane-air flame propagations with tulip distortion in a closed duct”, Fuel, 161 (2015), 248–253 | DOI

[4] V. Bychkov, V. Akkerman, G. Fru, A. Petchenko, L. E. Eriksson, “Flame acceleration in the early stages of burning in tubes”, Combustion and Flame, 150:4 (2007), 263–76 | DOI

[5] D. Dunn-Rankin, P. K. Barr, R. F. Sawyer, “Numerical and experimental study of “tulip” flame formation in a closed vessel”, Symposium (International) on Combustion, 21:1 (1988), 1291–301 | DOI

[6] D. Dunn-Rankin, R. F. Sawyer, “Tulip flames: changes in shape of premixed flames propagating in closed tubes”, Experiments in Fluids, 24 (1998), 130–40 | DOI

[7] C. L. Hackert, J. L. Ellzey, O. A. Ezekoye, “Effects of thermal boundary conditions on flame shape and quenching in ducts”, Combustion and Flame, 112:1–2 (1998), 73–84 | DOI

[8] H. Xiao, R. W. Houim, E. S. Oran, “Formation and evolution of distorted tulip flames”, Combustion and Flame, 162:11 (2015), 4084–4101 | DOI

[9] B. Ponizy, A. Claverie, B. Veyssiere, “Tulip flame the mechanism of flame front inversion”, Combustion and Flame, 161:12 (2014), 3051–3062 | DOI

[10] H. Xiao, O. Wang, X. Shen, S. Guo, J. Sun, “An experimental study of distorted tulip flame formation in a closed duct”, Combustion and Flame, 160:9 (2013), 1725–1728 | DOI

[11] H. Xiao, D. Makarov, J. Suna, V. Molkov, “Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct”, Combustion and Flame, 159:4 (2012), 1523–1538 | DOI

[12] B. Lyuis, G. Elbe, Gorenie, plamya i vzryvy v gazakh, per. s angl. pod red. K.I. Schelkina, A.A. Borisova, Mir, M., 1968

[13] E. S. Schetinkov, Fizika goreniya gazov, Nauka, M., 1965

[14] K. M. Moiseeva, A. Yu. Krainov, D. A. Krainov, “Numerical investigation on burning rate of propane-air mixture”, IOP Conf. Series: Materials Science and Engineering, 696 (2019), 012011 | DOI

[15] K. M. Moiseeva, A. Yu. Krainov, Iskrovoe zazhiganie goryuchikh gazov i gazovzvesei, STT, Tomsk, 2020

[16] K. M. Moiseeva, A. Yu. Krainov, “Simulation of combustion of methane-air mixture in two dimensional approximation”, Journal of Physics: Conference Series, 2022, 012013 | DOI

[17] B. van Leer, “Flux-vector spliting for the Euler equations”, Eighth International Conference on Numerical Methods in Fluid Dynamics, Proceedings of the Conference (Rheinisch Westfalische Technische Hochschule Aachen, Germany, June 28–July 2, 1982), Lecture Notes in Physics, 170, ed. E. Krause, 507–512

[18] V. N. Semenov, Fizika bystroprotekayuschikh protsessov. Gorenie i detonatsiya gazovykh smesei, In-t problem bezopasnogo razvitiya atomnoi energii, M., 2006