On the brachistochrone shape under the Magnus effect
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 87-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies the effect of the rotational motion of a body on the trajectory of its fastest descent into the gravity field. The body is considered as a ball rotating about its instantaneous axis, which is perpendicular to the pattern, with a variable angular frequency. The rotation of the ball creates a vortex flow that induces the highest pressure at the top of the ball and the least pressure at the bottom. Thus, the Magnus force (down-force), which is opposed to the reaction force of a trough, occurs. It provides an “antilifting” effect resulting in strong changes in the brachistochrone shape. Based on the fundamental principle of dynamics, a general vector equation of motion is obtained in the form of projections on a moving basis represented as unit vectors of the tangent and normal to the trajectory of the motion. A parametric solution to the equations describing the shape of the trough in Cartesian coordinates is obtained in the absence of dissipative forces. It follows from the resulting solution that the Magnus effect is most noticeable only for massive bodies of long radius. Using the numerical integration methods, various shapes of the deformed brachistochrone are presented as a result of the Magnus effect.
Mots-clés : Magnus effect, brachistochrone, equations of motion.
@article{VTGU_2023_81_a7,
     author = {S. O. Gladkov and S. B. Bogdanova},
     title = {On the brachistochrone shape under the {Magnus} effect},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {87--96},
     year = {2023},
     number = {81},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_81_a7/}
}
TY  - JOUR
AU  - S. O. Gladkov
AU  - S. B. Bogdanova
TI  - On the brachistochrone shape under the Magnus effect
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 87
EP  - 96
IS  - 81
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_81_a7/
LA  - ru
ID  - VTGU_2023_81_a7
ER  - 
%0 Journal Article
%A S. O. Gladkov
%A S. B. Bogdanova
%T On the brachistochrone shape under the Magnus effect
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 87-96
%N 81
%U http://geodesic.mathdoc.fr/item/VTGU_2023_81_a7/
%G ru
%F VTGU_2023_81_a7
S. O. Gladkov; S. B. Bogdanova. On the brachistochrone shape under the Magnus effect. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 87-96. http://geodesic.mathdoc.fr/item/VTGU_2023_81_a7/

[1] C. O. Gladkov, S. B. Bogdanova, “K teorii dvizheniya tel s peremennoi massoi”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 65, 83–91 | DOI

[2] C. O. Gladkov, S. B. Bogdanova, “K teorii prostranstvennoi brakhistokhrony”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 68, 53–60 | DOI

[3] S. O. Gladkov, S. B. Bogdanova, “On a class of planar geometrical curves with constant reaction forces acting on particles moving along them”, Journal of Mathematical Sciences, 257:1 (2021), 27–30 | DOI | Zbl

[4] G. Magnus, “Uber eine abfallende Erscheinung bei rotierenden Korpern”, Annalen der Physik, 164:1 (1853), 1–29 | DOI

[5] A. S. Platou, “Magnus Characteristics of Fined and Non Finned Projectiles”, AIAA Journal, 3:1 (1960), 83–90 | DOI

[6] H. Dwyer, B. R. Sander, “Magnus Forces Spinning Supersonic Cones. Part I: The Boundary Layer”, AIAA Journal, 14:11 (1976), 498–522 | DOI

[7] W. B. Sturek, H. Dwyer, L. Kayser, C. Nietubicz, R. Reklis, K. Opalka, “Computations of Magnus Effects for Yawed Spinning Body of Revolution”, AIAA Journal, 16:7 (1978), 687–692 | DOI

[8] V. P. Shkadova, “Vraschayuschiisya tsilindr v potoke vyazkoi neszhimaemoi zhidkosti”, Izvestiya AN CCCP. Mekhanika zhidkosti i gaza, 14:1 (1982), 16–21

[9] G. S. Landsberg, Elementarnyi uchebnik fiziki, v. 1, Mekhanika. Teplota. Molekulyarnaya fizika, Nauka, M., 1984, 606 pp.

[10] M. Péchier, P. Guillen, R. Cayzac, “Magnus Effect Over Finned Projectiles”, AIAA Journal of Spacecraft and Rockets, 38:4 (2001), 542–549 | DOI

[11] N. M. Bychkov, “Vetrodvigatel s effektom Magnusa. 1. Rezultaty modelnykh issledo vanii”, Teplofizika i aeromekhanika, 11:4 (2004), 583–596

[12] N. M. Bychkov, “Vetrodvigatel s effektom Magnusa. 2. Kharakteristiki vraschayuschegosya tsilindra”, Teplofizika i aeromekhanika, 12:1 (2005), 159–175

[13] R. Cayzac, E. Carette, D. Pascal, P. Guillen, “Magnus effect: Physical Origins and Numerical Prediction”, Journal of Applied Mechanics, 78:5 (2011), 051005–051012 | DOI

[14] S. P. Strelkov, Mekhanika, Nauka, M., 1975, 560 pp. | MR

[15] G. Dupeux, A. Le Goff, D. Quere, C. Clanet, “The spinning ball spiral”, New Journal of Physics, 12 (2010), 093004 | DOI

[16] H. M. Barkla, L. J. Auchterloniet, “The Magnus or Robins effect on rotating spheres”, Journal of Fluid Mechanics, 47:3 (1971), 437–447 | DOI

[17] S. O. Gladkov, “Ob odnom metodicheskom podkhode pri vyvode osnovnykh fizicheskikh uravnenii”, Fizicheskoe obrazovanie v vuzakh, 27:2 (2021), 5–12