Experimental and theoretical studies of the flow around a sphere with account for gas injection from its surface
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 57-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results of the experimental and theoretical studies of the gas flow around a solid sphere under conditions of mass outflow from its surface are presented. A new experimental setup and a method for studying the flow around a solid sphere during the gas injection from its surface are proposed with the aim of improving the accuracy of determining the drag coefficient. In the range of the Reynolds number (Re = 133$\div$667), experimental results show that the drag coefficient decreases at the gas injection from the surface of the sphere. Moreover, the drag coefficient decreases with an increase in the density of the injected air flow at the fixed Reynolds number. Numerical simulation of a two-phase flow around a sphere with the gas injection from its surface is carried out for two calculation cases: with a uniform gas outflow from the surface of a porous sphere and with gas injection from perforated holes on the sphere surface. The numerical calculation results for the case of gas injection from the holes of the sphere are in quantitative and qualitative agreement with the experimental data.
Keywords: solid sphere, flow around a sphere, experimental study, numerical simulation.
Mots-clés : gas injection, drag coefficient
@article{VTGU_2023_81_a5,
     author = {V. A. Arkhipov and S. A. Basalaev and K. V. Kostyushin and K. G. Perfil'eva and A. S. Usanina},
     title = {Experimental and theoretical studies of the flow around a sphere with account for gas injection from its surface},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {57--72},
     year = {2023},
     number = {81},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_81_a5/}
}
TY  - JOUR
AU  - V. A. Arkhipov
AU  - S. A. Basalaev
AU  - K. V. Kostyushin
AU  - K. G. Perfil'eva
AU  - A. S. Usanina
TI  - Experimental and theoretical studies of the flow around a sphere with account for gas injection from its surface
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 57
EP  - 72
IS  - 81
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_81_a5/
LA  - ru
ID  - VTGU_2023_81_a5
ER  - 
%0 Journal Article
%A V. A. Arkhipov
%A S. A. Basalaev
%A K. V. Kostyushin
%A K. G. Perfil'eva
%A A. S. Usanina
%T Experimental and theoretical studies of the flow around a sphere with account for gas injection from its surface
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 57-72
%N 81
%U http://geodesic.mathdoc.fr/item/VTGU_2023_81_a5/
%G ru
%F VTGU_2023_81_a5
V. A. Arkhipov; S. A. Basalaev; K. V. Kostyushin; K. G. Perfil'eva; A. S. Usanina. Experimental and theoretical studies of the flow around a sphere with account for gas injection from its surface. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 57-72. http://geodesic.mathdoc.fr/item/VTGU_2023_81_a5/

[1] M. M. Gorokhov, I. G. Rusyak, V. A. Tenenev, “Chislennoe issledovanie obtekaniya osesimmetrichnykh tel pri nalichii vduva s poverkhnosti”, Mekhanika zhidkosti i gaza, 1996, no. 4, 162–166 | Zbl

[2] J. K. Dukowicz, “An exact solution for the drag of a sphere in low Reynolds number flow with strong uniform suction or blowing”, The Physics of Fluids, 25:7 (1982), 1117–1118 | DOI | Zbl

[3] J. K. Dukowicz, “Drag of evaporating or condensing droplets in low Reynolds number flow”, The Physics of Fluids, 27:6 (1984), 1351–1358 | DOI | Zbl

[4] T. R. Jayawickrama, N. E.L. Haugen, M. U. Babler et al, “The effect of Stefan flow on the drag coefficient of spherical particles in a gas flow”, International Journal of Multiphase Flow, 117 (2019), 130–137 | DOI | MR

[5] P. Chuchottaworn, A. Fujinami, K. Asano, “Numerical analysis of the effect of mass injection or suction on drag coefficients of a sphere”, Journal of Chemical Engineering of Japan, 16:1 (1983), 18–24 | DOI

[6] R. Kurose, H. Makino, S. Komori et al, “Effects of outflow from the surface of a sphere on drag, shear lift, and scalar diffusion”, The Physics of Fluids, 15:8 (2003), 2338–2351 | DOI

[7] M. Watanabe, J. Yahagi, “Effects of nonuniform outflow and buoyancy on drag coefficient acting on a spherical particle”, Journal of Flow Control, Measurement Visualization, 5:4 (2017), 99–110 | DOI

[8] Yu. V. Nikolskii, Yu. I. Khlopkov, “Teoreticheskoe i eksperimentalnoe issledovanie obtekaniya sfery sverkhzvukovym potokom maloi plotnosti s uchetom kondensatsii i ispareniya s poverkhnosti”, Uchenye zapiski TsAGI, 20:5 (1989), 118–122

[9] M. A. Koval, V. P. Stulov, A. I. Shvets, “Eksperimentalnoe issledovanie sverkhzvukovogo obtekaniya zatuplennykh tel s silnym raspredelennym vduvom”, Izvestiya AN SSSR. Mekhanika zhidkosti i gaza, 1978, no. 3, 84–95

[10] V. A. Arkhipov, S. A. Basalaev, K. G. Perfileva, S. N. Polenchuk, A. S. Usanina, “Metody opredeleniya koeffitsienta soprotivleniya pri vduve gaza s poverkhnosti sfericheskoi chastitsy”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2022, no. 76, 56–69 | DOI

[11] V. A. Arkhipov, S. A. Basalaev, Goldin V.D, K. G. Perfileva, A. S. Usanina, “Metod issledova niya vliyaniya vduva gaza s poverkhnosti tverdoi sfery na koeffitsient soprotivleniya”, Optika atmosfery i okeana, 35:6 (2022), 510–514 | DOI

[12] V. A. Arkhipov, S. A. Basalaev, K. G. Perfileva, S. N. Polenchuk, A. S. Usanina, Sposob opredeleniya koeffitsienta aerodinamicheskogo soprotivleniya tverdoi sfery pri vduve gaza s ee poverkhnosti, zayavka na patent RF No 2022122234 ot 16.08.2022. G01N 15/10

[13] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987, 464 pp.

[14] D. C. Wilcox, Turbulence modeling for CFD, DCW Industries, Inc., California, 1993, 460 pp.

[15] F. R. Menter, M. Kuntz, R. Langtry, “Ten years of industrial experience with the SST turbulence model”, Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, 2003, 625–632

[16] V. Venkatakrishnan, On the accuracy of limiters and convergence to steady-state solutions, Paper 93-0880, AIAA, 1993, 11 pp. | DOI

[17] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics, 3rd ed., Springer-Verlag, London–New York, 2009, 748 pp. | MR | Zbl