On basic invariants of some finite subgroups in $SL_3(\mathbf{C})$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 39-48
Voir la notice de l'article provenant de la source Math-Net.Ru
The work is devoted to the study of algebras of invariants of finite unitary groups $G'=G\cap SL_3(\mathbf{C})$, where $G$ is a finite unitary irreducible primitive group generated by reflections in the unitary space $U^3$. It is known that the system of invariants of the group $G'$ that form an algebra is obtained from the system of invariants of the group $G$ that form the algebra by adding all semi-invariants of the group $G$ of a special form. In the paper, generators of the algebras of invariants of all the indicated groups $G'$ are constructed.
Keywords:
unitary space, reflection, reflection groups, algebra of invariants, basic invariants.
Mots-clés : invariant, semi-invariant
Mots-clés : invariant, semi-invariant
@article{VTGU_2023_81_a3,
author = {O. I. Rudnitskii},
title = {On basic invariants of some finite subgroups in $SL_3(\mathbf{C})$},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {39--48},
publisher = {mathdoc},
number = {81},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_81_a3/}
}
TY - JOUR
AU - O. I. Rudnitskii
TI - On basic invariants of some finite subgroups in $SL_3(\mathbf{C})$
JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY - 2023
SP - 39
EP - 48
IS - 81
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VTGU_2023_81_a3/
LA - ru
ID - VTGU_2023_81_a3
ER -
O. I. Rudnitskii. On basic invariants of some finite subgroups in $SL_3(\mathbf{C})$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 39-48. http://geodesic.mathdoc.fr/item/VTGU_2023_81_a3/