Linear finite functional in the weighted Sobolev space
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 14-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a representation of a linear functional in the weighted Sobolev space is obtained. The space is normed without use of pseudodifferential operators. The norm contains partial derivatives of all intermediate orders of the test function. The Sobolev space is considered to be of non-Hilbert type. First, we deduce the representation of linear functional via a boundary element of the test space. The boundary element corresponds to the given functional. This way, referring to Clarkson's inequalities, we prove the uniqueness of the boundary element. Then, to obtain a condition for the boundary element, we differentiate the function built based on the norm. The result leads to a representation of an arbitrary linear functional via the boundary element. When considering the boundary element as unknown, the representation performs as a nonlinear differential equation. Second, we consider a finite linear functional. The extreme function of such a functional was built in our earlier papers. The extreme function is expressed via convolution of the fundamental solution of a linear partial differential equation with a given functional. The functional performs as a distribution in the convolution. Convolution exists if the linear functional is finite. Using this fact, we prove that the representation of a finite linear functional via the boundary element is identical to the representation via the extreme function.
Keywords: weighted Sobolev space, linear finite functional, integral representation of a functional, norm of a functional, extreme function, Clarkson inequalities.
@article{VTGU_2023_81_a1,
     author = {I. V. Korytov},
     title = {Linear finite functional in the weighted {Sobolev} space},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {14--30},
     year = {2023},
     number = {81},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_81_a1/}
}
TY  - JOUR
AU  - I. V. Korytov
TI  - Linear finite functional in the weighted Sobolev space
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 14
EP  - 30
IS  - 81
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_81_a1/
LA  - ru
ID  - VTGU_2023_81_a1
ER  - 
%0 Journal Article
%A I. V. Korytov
%T Linear finite functional in the weighted Sobolev space
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 14-30
%N 81
%U http://geodesic.mathdoc.fr/item/VTGU_2023_81_a1/
%G ru
%F VTGU_2023_81_a1
I. V. Korytov. Linear finite functional in the weighted Sobolev space. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 14-30. http://geodesic.mathdoc.fr/item/VTGU_2023_81_a1/

[1] I. V. Korytov, “Ekstremalnaya funktsiya lineinogo funktsionala v vesovom prostranstve Soboleva”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2011, no. 2 (14), 5–15

[2] I. V. Korytov, “Ravnomernaya vypuklost vesovogo prostranstva Soboleva”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 26:6 (32) (2014), 25–34

[3] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988, 333 pp. | MR

[4] M. S. Agranovich, Sobolevskie prostranstva, ikh obobscheniya i ellipticheskie zadachi v oblastyakh s gladkoi i lipshitsevoi granitsei, Izd-vo MTsNMO, M., 2013, 378 pp.

[5] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985, 416 pp. | MR

[6] M. A. Shubin, Lektsii ob uravneniyakh matematicheskoi fiziki, Izd-vo MTsNMO, M., 2003, 303 pp.

[7] Ts. B. Shoinzhurov, “O priblizhennom integrirovanii funktsii v prostranstvakh S.L. Soboleva s vesom”, Doklady Akademii nauk SSSR, 218:4 (1974), 775–778

[8] I. V. Korytov, “Predstavlenie funktsionala pogreshnosti kubaturnoi formuly v vesovom prostranstve Soboleva”, Vychislitelnye tekhnologii, 11, spets. vyp. (2006), 59–66

[9] I. V. Korytov, “Funktsiya, predstavlyayuschaya funktsional pogreshnosti kubaturnoi formuly v prostranstve Soboleva”, Izvestiya Tomskogo politekhnicheskogo universiteta, 323:2 (2013), 21–25

[10] S. L. Sobolev, “O zadache interpolirovaniya funktsii n peremennykh”, Doklady Akademii nauk SSSR, 137:4 (1961), 778–781 | Zbl

[11] S. L. Sobolev, “O formulakh mekhanicheskikh kubatur v n-mernom prostranstve”, Doklady Akademii nauk SSSR, 137:3 (1961), 527–530 | MR | Zbl

[12] S. L. Sobolev, Nekotorye voprosy teorii kubaturnykh formul, Izd-vo SO AN SSSR, Novosibirsk, 1963, 8 pp.

[13] S. L. Sobolev, “O kubaturnykh formulakh”, Studia Mathematica, 1 (1963), 117–118 | Zbl

[14] S. L. Sobolev, Lektsii po teorii kubaturnykh formul : cpetskurs, prochitannyi v NGU v 1963/64 uchebnom godu, Izd-vo NGU, Novosibirsk, 1964, 192 pp.

[15] S. L. Sobolev, Lektsii po teorii kubaturnykh formul : kurs, prochitannyi v NGU v 1964/65 uchebnom godu, Izd-vo NGU, Novosibirsk, 1965, 263 pp.

[16] I. Babushka, S. L. Sobolev, “Optimizatsiya chislennykh metodov”, Aplikace Matematiky, 1965, 96–129

[17] S. L. Sobolev, “Skhodimost formul priblizhennogo integrirovaniya na funktsiyakh iz $L_2^{(m)}$”, Doklady Akademii nauk SSSR, 162:6 (1965), 1259–1261 | Zbl

[18] S. L. Sobolev, “Kubaturnye formuly s regulyarnym pogranichnym sloem”, Doklady Akademii nauk SSSR, 163:3 (1965), 587–590 | Zbl

[19] S. L. Sobolev, “O poryadke skhodimosti kubaturnykh formul”, Doklady Akademii nauk SSSR, 162:5 (1965), 1005–1008 | Zbl

[20] S. L. Sobolev, “O postroenii kubaturnykh formul s regulyarnym pogranichnym sloem”, Doklady Akademii nauk SSSR, 166:2 (1966), 295–297 | Zbl

[21] S. L. Sobolev, Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR

[22] S. L. Sobolev, V. L. Vaskevich, Kubaturnye formuly, In-t matematiki SO RAN, Novosibirsk, 1996, 483 pp. | MR

[23] V. I. Polovinkin, “Some estimates of norms of functionals of cubature formula errors”, Mathematical Notes of the Academy of Sciences of the USSR, 5:3 (1969), 192–195 | DOI | MR

[24] V. I. Polovinkin, “On cubature formulas with regular boundary layer”, Siberian Mathematical Journal, 13:4 (1972), 663–665 | DOI | MR

[25] Ts. B. Shoinzhurov, “Nekotorye voprosy teorii kubaturnykh formul v prostranstve $W_2^{(m)}$”, Sibirskii matematicheskii zhurnal, 8:2 (1967), 433–446

[26] Ts. B. Shoinzhurov, Otsenka funktsionalov pogreshnosti kubaturnoi formuly v prostranstvakh s normoi, zavisyaschei ot mladshikh proizvodnykh, dis. ... kand. fiz.-mat. nauk, Novosibirsk, 1967, 83 pp.

[27] Ts. B. Shoinzhurov, “Otsenka normy funktsionala pogreshnosti interpolyatsionnykh formul v prostranstve Soboleva $L_2^{(m)}$”, Trudy MIAN, 180 (1987), 234–235

[28] Ts. B. Shoinzhurov, “Nekotorye voprosy teorii kubaturnykh formul v neizotropnykh prostranstvakh S.L. Soboleva”, Doklady Akademii nauk SSSR, 209:5 (1973), 1036–1038

[29] Ts. B. Shoinzhurov, Teoriya kubaturnykh formul v funktsionalnykh prostranstvakh s normoi, zavisyaschei ot funktsii i ee proizvodnykh, dis. ... d-ra fiz.-mat. nauk, Ulan Ude, 1977, 235 pp.

[30] V. I. Polovinkin, “Asymptotic optimality of sequences of formulas with a regular boundary layer for odd m”, Siberian Mathematical Journal, 16:2 (1975), 253–258 | DOI | MR | Zbl

[31] V. I. Polovinkin, “Representation of linear functionals in $L_q^{(m^*)}(\Omega)$”, Siberian Mathematical Journal, 36:1 (1995), 140–142 | DOI | MR | Zbl

[32] V. I. Polovinkin, “Representation of functionals on the spaces $L_p^m(E_n)$”, Siberian Mathematical Journal, 38:1 (1997), 140–146 | DOI | MR | Zbl

[33] V. I. Polovinkin, “A formula for the functions realizing functionals”, Siberian Mathematical Journal, 42:4 (2001), 774–778 | DOI | MR | Zbl

[34] Ts. B. Shoinzhurov, Kubaturnye formuly v prostranstve S.L. Soboleva $W_p^m$, Izd-vo VSGTU, Ulan-Ude, 2002, 201 pp. | MR

[35] Ts. B. Shoinzhurov, Otsenka normy funktsionala pogreshnosti kubaturnykh formul v razlichnykh funktsionalnykh prostranstvakh, Izd-vo Buryat. nauch. tsentra SO RAN, Ulan-Ude, 2005, 247 pp.

[36] I. B. Korytov, “Neravenstva Klarksona dlya prostranstva Soboleva periodicheskikh funktsii”, Uchenye zapiski Kazanskogo universiteta. Ser. Fiziko-matematicheskie nauki, 158, no. 3, 2016, 336–349

[37] I. V. Korytov, “Clarkson's inequalities for periodic Sobolev space”, Lobachevskii Journal of Mathematics, 38:6 (2017), 1146–1155 | DOI | MR

[38] Kh. M. Shadimetov, A. R. Hayotov, F. A. Nuraliev, “On an optimal quadrature formula in Sobolev space $L_2^{(m)}$”, Journal of Computational and Applied Mathematics, 243:1 (2013), 91–112 | DOI | MR | Zbl

[39] A. R. Hayotov, G. V. Milovanovic, Kh. M. Shadimetov, “Optimal quadrature formula in the sense of Sard in $K_2(P_3)$ space”, Publications de l'Institut Mathematique, 95:109 (2014), 29–47 | DOI | MR | Zbl

[40] N. D. Boltaev, A. R. Hayotov, G. V. Milovanovic, Kh. M. Shadimetov, “Optimal quadrature formulas for Fourier coefficients in $W_2^{(M, m-1)}$ space”, Journal of Applied Analysis and Computation, 7:4 (2017), 1233–1266 | DOI | MR

[41] V. L. Vaskevich, “Extremal functions of cubature formulas on a multidimensional sphere and spherical splines”, Siberian Advances in Mathematics, 22:3 (2012), 217–226 | DOI | MR

[42] V. L. Vaskevich, “Errors, condition numbers, and guaranteed accuracy of higher dimensional spherical cubatures”, Siberian Mathematical Journal, 53:6 (2012), 996–1010 | DOI | MR | Zbl

[43] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981, 512 pp. | MR