The setk $K_p$ in some finite groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 5-13
Voir la notice de l'article provenant de la source Math-Net.Ru
The study of the properties of the set $K_p$ consisting of elements of a non-Abelian group that commute with exactly $p$ elements of the group $G$ is continued. In particular, this question is considered for groups of order $p_1p_2\cdots p_k$, $k\geqslant 3$ and $p^2q$, where $p_i$, $q$ are prime numbers.
It is also proved that the set $K_5$ is non-empty in the three-dimensional projective special linear group. This group has the same order as the alternating group $A_8$, in which the set $K_5$ is empty.
Mots-clés :
group
Keywords: centralizer of an element, involution, Sylow and Hall subgroups.
Keywords: centralizer of an element, involution, Sylow and Hall subgroups.
@article{VTGU_2023_81_a0,
author = {A. I. Zabarina and E. A. Fomina},
title = {The setk $K_p$ in some finite groups},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--13},
publisher = {mathdoc},
number = {81},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_81_a0/}
}
A. I. Zabarina; E. A. Fomina. The setk $K_p$ in some finite groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 5-13. http://geodesic.mathdoc.fr/item/VTGU_2023_81_a0/