The setk $K_p$ in some finite groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 5-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study of the properties of the set $K_p$ consisting of elements of a non-Abelian group that commute with exactly $p$ elements of the group $G$ is continued. In particular, this question is considered for groups of order $p_1p_2\cdots p_k$, $k\geqslant 3$ and $p^2q$, where $p_i$, $q$ are prime numbers. It is also proved that the set $K_5$ is non-empty in the three-dimensional projective special linear group. This group has the same order as the alternating group $A_8$, in which the set $K_5$ is empty.
Mots-clés : group
Keywords: centralizer of an element, involution, Sylow and Hall subgroups.
@article{VTGU_2023_81_a0,
     author = {A. I. Zabarina and E. A. Fomina},
     title = {The setk $K_p$ in some finite groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--13},
     year = {2023},
     number = {81},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_81_a0/}
}
TY  - JOUR
AU  - A. I. Zabarina
AU  - E. A. Fomina
TI  - The setk $K_p$ in some finite groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 5
EP  - 13
IS  - 81
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_81_a0/
LA  - ru
ID  - VTGU_2023_81_a0
ER  - 
%0 Journal Article
%A A. I. Zabarina
%A E. A. Fomina
%T The setk $K_p$ in some finite groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 5-13
%N 81
%U http://geodesic.mathdoc.fr/item/VTGU_2023_81_a0/
%G ru
%F VTGU_2023_81_a0
A. I. Zabarina; E. A. Fomina. The setk $K_p$ in some finite groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 5-13. http://geodesic.mathdoc.fr/item/VTGU_2023_81_a0/

[1] A. I. Zabarina, U. A. Guselnikova, E. A. Fomina, “O kommutiruyuschikh elementakh gruppy”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2015, no. 6 (38), 27–32 | DOI

[2] A. I. Zabarina, E. A. Fomina, “O mnozhestve $K_3(G)$ elementov konechnykh grupp”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 55, 5–11 | DOI | MR | Zbl

[3] A. I. Zabarina, E. A. Fomina, “O mnozhestve $K_p$ v konechnykh gruppakh”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 68, 33–40 | DOI | MR | Zbl

[4] M. Kholl, Teoriya grupp, Izd-vo inostr. lit., M., 1962, 468 pp.

[5] A. R. Chekhlov, Uprazhneniya po osnovam teorii grupp, Tom. gos. un-t, Tomsk, 2004, 275 pp.

[6] V. A. Belonogov, Zadachnik po teorii grupp, Nauka, M., 2000, 239 pp.

[7] D. Gorenstein, Konechnye prostye gruppy: vvedenie v ikh klassifikatsiyu, Mir, M., 1985, 352 pp.

[8] O. V. Bogopolskii, Vvedenie v teoriyu grupp, In-t kompyuternykh issledovanii, M.–Izhevsk, 2002, 148 pp. | MR