Magnesium silicates at high dynamic loading
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 111-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Research on the dynamic compression of geological materials is important for understanding composition and physical condition of the deep interior of the Earth and other planets. It also provides some data on the interaction processes related to the formation and evolution of planets. Magnesium silicates dominate in Earth's mantle and, thus, are expected to become the major phases in rocky exoplanets. In particular, enstatite Mg$_2$[Si$_2$O$_6$] and forsterite Mg$_2$SiO$_4$ are essential constituents of Earth's mantles. Strong emphasis is put on the phase transition possibility for magnesium silicates under study. A remarkable fact is the dissociation of Mg$_2$SiO$_4$ into the following oxides: MgO and SiO$_2$ (stishovite). The experiments have been carried out at a pressure value of 33 GPa, which corresponds to that in Earth's mantle at a depth of 1000 km. In this paper, the results of modeling the shock-wave loading of enstatite and forsterite as the mixtures of quartz SiO$_2$ and periclase MgO are presented. The proposed model assumes that the components of the mixture under shock-wave loading are in thermodynamic equilibrium. The components of the material under study are considered in a phase transition region as a mixture of low- and high-pressure phases. The model is also valid for a polymorphic phase transition region. The calculations of magnesium silicates are performed with account for the polymorphic phase transition of quartz and periclase. The results are validated using the data obtained in dynamic experiments.
Keywords: equation of state, magnesium silicates, quartz
Mots-clés : phase transition, periclase.
@article{VTGU_2022_79_a9,
     author = {K. K. Maevskiy},
     title = {Magnesium silicates at high dynamic loading},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {111--119},
     year = {2022},
     number = {79},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_79_a9/}
}
TY  - JOUR
AU  - K. K. Maevskiy
TI  - Magnesium silicates at high dynamic loading
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 111
EP  - 119
IS  - 79
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_79_a9/
LA  - ru
ID  - VTGU_2022_79_a9
ER  - 
%0 Journal Article
%A K. K. Maevskiy
%T Magnesium silicates at high dynamic loading
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 111-119
%N 79
%U http://geodesic.mathdoc.fr/item/VTGU_2022_79_a9/
%G ru
%F VTGU_2022_79_a9
K. K. Maevskiy. Magnesium silicates at high dynamic loading. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 111-119. http://geodesic.mathdoc.fr/item/VTGU_2022_79_a9/

[1] Borucki W.J., “Kepler mission: development and overview”, Reports on Progress in Physics, 79 (2016), 036901 | DOI

[2] Driscoll P.E., “Planetary interiors, magnetic fields and habitability”, Handbook of Exoplanets, eds. H.J. Deeg, J.A. Belmonte, Springer International Publishing, Cham, 2018, 1–18 | DOI

[3] Duffy T.S., Smith R.F., “Ultra-high pressure dynamic compression of geological materials”, Front. Earth Sci., 7:23 (2019), 1–20 | DOI

[4] Mosenfelder J.L., Asimow P.D., Ahrens T.J., “Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite”, Journal of Geophysical Research, 112 (2007), B06208 | DOI

[5] Kumazawa M., Sawamoto H., Ohtani E., Mazaki K., “Postspinel Phase of Forsterite and Evolution of the Earth's Mantle”, Nature, 247 (1974), 356–358 | DOI

[6] Maevskii K.K., “Chislennoe issledovanie udarno-volnovogo nagruzheniya metallicheskikh kompozitov na baze W i WC”, Zhurnal tekhnicheskoi fiziki, 91:5 (2021), 815820 | DOI

[7] Zeldovich Ya.B., Raizer Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodina micheskikh yavlenii, 3-e izd., ispr., Fizmatlit, M., 2008, 656 pp.

[8] Maevskii K.K., Kinelovskii S.A., “Thermodynamic parameters of mixtures with epoxy as a com ponent under shock wave loading”, Journal of Physics: IOP Conf. Series, 946 (2018), 012113 | DOI

[9] Maevskii K.K., Kinelovskii S.A., “Termodinamicheskie parametry smesei s nitridom krem niya pri udarno-volnovom vozdeistvii v predstavleniyakh ravnovesnoi modeli”, Teplofizika vysokikh temperatur, 56:6 (2018), 876–881 | DOI

[10] S.P. Marsh (ed.), LASL Shock Hugoniot Data, Univ. California Press, Berkeley, 1980, 658 pp.

[11] Levashov P.R., Khishchenko K.V., Lomonosov I.V., Fortov V.E., “Database on shock-wave experiments and equations of state available via Internet”, AIP Conf. Proc., 706 (2004), 87–90 http://www.ihed.ras.ru/rusbank/

[12] Sekine T., Ozaki N., Miyanishi K., Asaumi Y., Kimura T., Albertazzi B. et al., “Shock compression response of forsterite above 250 GPa”, Sci. Adv., 2 (2016), e1600157 | DOI