A new processing algorithm for photoelasticity method data
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 100-110
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The photoelasticity method is a reliable tool for studying the stress state of flat elements in building structures using the models made of optically sensitive materials. In this paper, the classical photoelasticity is considered. The experimental data obtained with the use of the method are presented as interferograms. A decoding procedure implies the obtaining of some normal and tangential stress values in the plane of the model. The polarization-projection installations that are used in optical methods are rather simple. However, the digital processing of the images obtained during the loaded model transmission requires high-intelligent software. Nowadays, national and international laboratories, working with polarization-optical methods, strive to develop digital photoelasticity. For some reasons, the authors of the presented work needed to develop their own algorithms for decoding experimental data of the photoelasticity method. This work is mainly devoted to a formulation of the problems to be solved. Some of them have already been solved, and the results obtained are presented here. The authors place special emphasis on the description of the algorithm for tracing of interference fringes based on the analysis of the image gradient.
Keywords: photoelasticity method, image processing, tracing of interference fringes.
@article{VTGU_2022_79_a8,
     author = {A. V. Likhachev and M. V. Tabanyukhova},
     title = {A new processing algorithm for photoelasticity method data},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {100--110},
     year = {2022},
     number = {79},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_79_a8/}
}
TY  - JOUR
AU  - A. V. Likhachev
AU  - M. V. Tabanyukhova
TI  - A new processing algorithm for photoelasticity method data
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 100
EP  - 110
IS  - 79
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_79_a8/
LA  - ru
ID  - VTGU_2022_79_a8
ER  - 
%0 Journal Article
%A A. V. Likhachev
%A M. V. Tabanyukhova
%T A new processing algorithm for photoelasticity method data
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 100-110
%N 79
%U http://geodesic.mathdoc.fr/item/VTGU_2022_79_a8/
%G ru
%F VTGU_2022_79_a8
A. V. Likhachev; M. V. Tabanyukhova. A new processing algorithm for photoelasticity method data. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 79 (2022), pp. 100-110. http://geodesic.mathdoc.fr/item/VTGU_2022_79_a8/

[1] Demidova I.I., “Fotouprugost i stomatologiya”, Rossiiskii zhurnal biomekhaniki, 1999, no. 2, 26–27

[2] Kotenko M.V., Razdorskii V.V., Lelyavin A.B., “Polyarizatsionno-opticheskii metod v issledovanii napryazhenno-deformirovannogo sostoyaniya modelei s dentalnymi implantatami iz nitinola”, Sibirskii meditsinskii zhurnal, 2018, no. 8, 34–38

[3] Kochina M.L., Demin Yu.A., Kaplin I.V., Kovtun N.M., “Model napryazhenno-deformirovannogo sostoyaniya rogovitsy glaza”, Vostochno-evropeiskii nauchnyi zhurnal, 2017, no. 2-2, 62–67

[4] Matsushima M., Tercero C., Ikeda S., Fukuda T., Negoro M., “Three-dimensional visualization of photoelastic stress analysis for catheter insertion robot”, Proceedings of 23rd IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS) (Taipei, 2010), 879–884 | DOI

[5] Matsushima M., Tercero C., Ikeda S., Fukuda T., Arai F., Negoro M., Takahashi I., “Photoelastic stress analysis in blood vessel phantoms: three-dimensional visualization and saccular aneurysm with bleb”, International Journal of Medical Robotics and Computer Assisted Surgery, 7:1 (2011), 33–41 | DOI

[6] Feng W., Laishou L., Junhua Z., Chun Y., Yue W., “Research on the effect of bedrock upon the stress of a gravity dam bulk by the photoelastic method”, Journal of Materials Processing Technology, 123:2 (2002), 236–240 | DOI

[7] Paulish A.G., Sidorov V.I., Fedorinin V.N., Shatov V.A., “Pezoopticheskii datchik de formatsii i metod kontrolya parametrov dvizheniya pod'emnykh mekhanizmov”, Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2018, no. 6, 530–538

[8] Xi X., Wong G.K.L., Weiss T., Russell P.S.J., “Measuring mechanical strain and twist using helical photonic crystal fiber”, Optics Letters, 38:24 (2013), 5401–5404 | DOI

[9] Volkov I.V., “Vnestendovaya spekl-golografiya. Ispolzovanie golograficheskoi i speklinterferometrii pri izmerenii deformatsii naturnykh konstruktsii”, Kompyuternaya optika, 2010, no. 1, 82–89

[10] Morozova D.V., Serova E.A., “Issledovanie vliyaniya konstruktivnogo resheniya uzlov metallicheskikh konstruktsii pri variantnom proektirovanii”, Ekologiya i stroitelstvo, 2015, no. 2, 4–8

[11] Popova M.V., Shokhin P.B., Glebova T.O., Shabardina N.D., “Osobennosti inzhenernogo rascheta derevokompozitnykh konstruktsii”, Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova, 2018, no. 8, 36–43

[12] Zerkal S.M., Kharinova N.V., Tabanyukhova M.V., “Investigation of stress state in plane truss nodes”, XIII International Scientific Conference Architecture and Construction, IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd., Bristol, 2020, 012008 | DOI

[13] Albaut G.N., Matus E.P., Tabanyukhova M.V., “Issledovanie napryazhennogo sostoyaniya dispersno-armirovannykh balok s privlecheniem metoda fotouprugosti”, Deformatsiya i razrushenie materialov, 2009, no. 4, 46–48

[14] Akhmetzyanov F.Kh., “Vliyanie poverkhnosti betonnykh i zhelezobetonnykh elementov na povrezhdaemost (chast 2)”, Izvestiya Kazanskogo gosudarstvennogo arkhitekturnostroitelnogo universiteta, 2010, no. 1, 96–101

[15] Makovetskaya-Abramova O.V., Khlopova A.V., Makovetskii V.A., “Issledovanie kontsentratsii napryazhenii pri svarke truboprovodov”, Tekhniko-tekhnologicheskie problemy servisa, 2014, no. 2, 25–27

[16] Dyurelli A., Raili U., Vvedenie v fotomekhaniku (polyarizatsionno-opticheskii metod), per. s angl., Mir, M., 1970, 576 pp.

[17] G.L. Khesin (red.), Metod fotouprugosti, v 3 t., v. 1, Reshenie zadach statiki sooruzhenii. Metod opticheski chuvstvitelnykh pokrytii. Opticheski chuvstvitelnye materialy, Stroiizdat, M., 1975, 460 pp.

[18] Aleksandrov A.Ya., Akhmetzyanov M.Kh., Polyarizatsionno-opticheskie metody mekhaniki deformiruemogo tela, Nauka, M., 1973, 576 pp.

[19] Stepanova L.V., Dolgikh V.S., “Tsifrovaya obrabotka rezultatov optoelektronnykh izmerenii. Metod fotouprugosti i ego primenenie dlya opredeleniya koeffitsientov mnogoparametricheskogo asimptoticheskogo razlozheniya M. Uilyamsa polya napryazhenii”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Fiziko-matematicheskie nauki, 2017, no. 4, 717–735

[20] Baek T.H., Kim M.S., Hong D.P., “Fringe analysis for photoelasticity using image processing techniques”, International Journal of Software Engineering and its Applications, 8:4 (2014), 91–102 | DOI

[21] Kosygin A.N., Kosygina L.N., “Tsifrovaya obrabotka eksperimentalnykh interferogramm, poluchennykh metodom fotouprugosti”, Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya, 2019, no. 2, 75–91

[22] Surendra K.V.N., Simha K.R.Y., “Digital image analysis around isotropic points for photoelastic pattern recognition”, Optic Engineering, 54:8 (2015), 081209 | DOI

[23] Likhachev A.V., Tabanyukhova M.V., “Otsenka rasstoyaniya ot zadannoi tochki do maksimuma interferentsionnoi polosy”, Avtometriya, 2021, no. 3, 30–38 | DOI

[24] Sergienko A.B., Tsifrovaya obrabotka signalov, 2-e izd., Piter, SPb., 2007, 751 pp.

[25] Gonsales R., Vuds R., Tsifrovaya obrabotka izobrazhenii, per. s angl., 3-e izd., Tekhnosfera, M., 2012, 1072 pp.

[26] Likhachev A.V., “Novyi algoritm povysheniya kontrasta melkomasshtabnykh detalei izobrazheniya na osnove razlozheniya po veivletam”, Tsifrovaya obrabotka signalov, 2018, no. 3, 44–48

[27] Likhachev A.V., “Modifitsirovannyi metod obnaruzheniya melkikh struktur na zashumlennykh izobrazheniyakh”, Avtometriya, 2019, no. 6, 55–63 | DOI